Published online by Cambridge University Press: 04 March 2019
The voting paradox occurs when a democratic society seeking to aggregate individual preferences into a social preference reaches an intransitive ordering. However it is not widely known that the paradox may also manifest for an individual aggregating over attributes of risky objects to form a preference over those objects. When this occurs, the relation ‘stochastically greater than’ is not always transitive and so transitivity need not hold between those objects. We discuss the impact of other decision paradoxes to address a series of philosophical and economic arguments against intransitive (cyclical) choice, before concluding that intransitive choices can be justified.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.