Published online by Cambridge University Press: 01 October 2009
We consider weak convergence of sample averages of nonlinearly transformed stochastic triangular arrays satisfying a functional invariance principle. A fundamental paradigm for such processes is constituted by integrated processes. The results obtained are extensions of recent work in the literature to the multivariate and non-Gaussian case. As admissible nonlinear transformation, a new class of functionals (so-called locally p-integrable functions) is introduced that adapts the concept of locally integrable functions in Pötscher (2004, Econometric Theory 20, 1–22) to the multidimensional setting.