No CrossRef data available.
Article contents
SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
Published online by Cambridge University Press: 06 November 2023
Abstract
This paper proposes a subsampling inference method for extreme conditional quantiles based on a self-normalized version of a local estimator for conditional quantiles, such as the local linear quantile regression estimator. The proposed method circumvents difficulty of estimating nuisance parameters in the limiting distribution of the local estimator. A simulation study and empirical example illustrate usefulness of our subsampling inference to investigate extremal phenomena.
- Type
- ARTICLES
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press