Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:42:21.989Z Has data issue: false hasContentIssue false

The Statistical Theory of Linear SystemsE. J. Hannan and Manfred Deistler John Wiley & Sons, 1988

Published online by Cambridge University Press:  18 October 2010

Victor Solo
Affiliation:
Johns Hopkins University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Akaike, H. Stochastic theory of minimal realization. IEEE. Transactions on Automatic Control.AC-19 (1974): 667674.CrossRefGoogle Scholar
2.Akaike, H. Canonical correlation analysis of time series and the use of an information criterion. In Mehra, R.H. and Lainiotis, D.G. (eds.) System Identification: Advances and Case Studies, pp.2796. New York: Academic Press, 1976.CrossRefGoogle Scholar
3.Aoki, M.State Space Modeling of Time Series. New York: Springer-Verlag, 1987.CrossRefGoogle Scholar
4.Caines, P.E.Linear Stochastic Systems. New York: Wiley, 1988.Google Scholar
5.Chow, G.C.A comparison of the information and posterior probability criteria for model selection. Journal of Econometrics 16 (1981): 2133.CrossRefGoogle Scholar
6.Dahlhaus, R. Small sample effects in time series analysis: A new asymptotic theory and a new estimate. Annals of Statistics (1986).Google Scholar
7.Hamming, R.W.Coding and Information Theory. Englewood Cliffs, NJ: Prentice-Hall, 1980.Google Scholar
8.Hannan, E.J.Multiple Time Series. New York: Wiley, 1970.CrossRefGoogle Scholar
9.Hannan, E.J.Rational transfer function approximation. Statistical Science 2 (1986): 135161.Google Scholar
10.Hemerly, E.M. & Davis, M.H.A.. Strong consistency of the PLS criterion for order determination of autoregressive processes. Annals of Statistics 17 (1989): 941946.CrossRefGoogle Scholar
11.Jayant, N.S. & Noll, P.. Digital Coding of Waveforms. Englewood Cliffs, NJ: Prentice-Hall, 1984.Google Scholar
12.Kailath, T.Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.Google Scholar
13.Rissanen, J. & Caines, P.E.. The strong consistency of maximum likelihood estimators for ARMA processes. Annals of Statistics 7 (1979): 294315.CrossRefGoogle Scholar
14.Rissanen, J.Stochastic complexity. Journal of the Royal Statistical Society B49 (1987): 223239.Google Scholar
15.Sawa, T.Information criteria for discriminating among alternative regression models. Econometrica 46 (1978): 12731292.CrossRefGoogle Scholar
16.Shibata, R.Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika 63 (1976): 117126.CrossRefGoogle Scholar
17.Solo, V.Topics in advanced time series analysis. In Pino, G. del, and Rebolledo, R. (eds.) Lectures in Probability and Statistics. Springer-Verlag lecture notes in Mathematics vol. 1215, 1982/1986.Google Scholar