Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T18:42:41.907Z Has data issue: false hasContentIssue false

A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION

Published online by Cambridge University Press:  14 March 2012

Abstract

Models with single-index structures are among the many existing popular semiparametric approaches for either the conditional mean or the conditional variance. This paper focuses on a single-index model for the conditional quantile. We propose an adaptive estimation procedure and an iterative algorithm which, under mild regularity conditions, is proved to converge with probability 1. The resulted estimator of the single-index parametric vector is root-n consistent, asymptotically normal, and based on simulation study, is more efficient than the average derivative method in Chaudhuri, Doksum, and Samarov (1997, Annals of Statistics 19, 760–777). The estimator of the link function converges at the usual rate for nonparametric estimation of a univariate function. As an empirical study, we apply the single-index quantile regression model to Boston housing data. By considering different levels of quantile, we explore how the covariates, of either social or environmental nature, could have different effects on individuals targeting the low, the median, and the high end of the housing market.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Xia’s research is partially supported by the National Natural Science Foundation of China (11071113) and a research grant from RMI, National University of Singapore.

References

REFERENCES

Chaudhuri, P. (1991) Nonparametric estimates of regression quantiles and their local Bahadur representation. Annals of Statistics 19, 760777.CrossRefGoogle Scholar
Chaudhuri, P., Doksum, K., & Samarov, A. (1997) On average derivative quantile regression. Annals of Statistics 25, 715744.CrossRefGoogle Scholar
Chen, X. & Pouzo, D. (2009) Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. Journal of Econometrics 152, 4660.CrossRefGoogle Scholar
Cheng, M.-Y. (1997) A bandwidth selector for local linear density estimators. Annals of Statistics 25, 10011013.CrossRefGoogle Scholar
Delecroix, M., Hristache, M., & Patilea, V. (2006) On semiparametric M-estimation in single-index regression. Journal of Statistical Planning and Inference 136, 730769.CrossRefGoogle Scholar
Doksum, K. & Samarov, A. (1995) Nonparametric estimation of global functionals and a measure of explanatory power of covariates in regression. Annals of Statistics 23, 14431473.10.1214/aos/1176324307CrossRefGoogle Scholar
Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 9871008.CrossRefGoogle Scholar
Fan, J. & Gijbels, I. (1996) Local Polynomial Modeling and Its Applications. Chapman and Hall.Google Scholar
Fan, J., Hu, T.-C., & Truong, Y.K. (1995) Robust nonparametric function estimation. Scandinavian Journal of Statistics 22, 433446.Google Scholar
Fan, J. & Huang, T. (2005) Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11, 10311057.CrossRefGoogle Scholar
Härdle, W., Hall, P., & Ichimura, H. (1993) Optimal smoothing in single-index models. Annals of Statistics 21, 157178.CrossRefGoogle Scholar
Harrison, D. & Rubinfeld, D.L. (1978) Hedonic price and the demand for clean air. Journal of Environmental Economics and Management 5, 81102.CrossRefGoogle Scholar
Hong, S. (2003) Bahadur representation and its application for local polynomial estimates in nonparametric M-regression. Journal of Nonparametric Statistics 15, 237251.CrossRefGoogle Scholar
Hristache, M., Juditsky, A., Polzehl, J., & Spokoiny, V. (2001) Structure adaptive approach for dimension reduction. Annals of Statistics 29, 15371566.CrossRefGoogle Scholar
Ichimura, H. (1993) Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics 58, 71120.10.1016/0304-4076(93)90114-KCrossRefGoogle Scholar
Ichimura, H. & Lee, S. (2006) Characterization of the asymptotic distribution of semiparametric estimators. Cemmap working paper CWP15/06.Google Scholar
Jones, L.K. (1987) On a conjecture of Huber concerning the convergence of projection pursuit regression. Annals of Statistics 15, 880882.10.1214/aos/1176350382CrossRefGoogle Scholar
Jurečková, J. & Sen, P.K. (1996) Robust Statistical Procedures: Asymptotics and Interrelations. Wiley.Google Scholar
Klein, R.W. & Spady, R.H. (1993) An efficient semiparametric estimator for binary response models. Econometrica 61, 387421.10.2307/2951556CrossRefGoogle Scholar
Knoepfel, H. (2000) Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use. Wiley-IEEE.CrossRefGoogle Scholar
Koenker, R. (2005) Quantile Regression. Cambridge University Press.CrossRefGoogle Scholar
Koenker, R. & Bassett, G. (1978) Regression quantiles. Econometrica 46, 3350.10.2307/1913643CrossRefGoogle Scholar
Koenker, R. & Bilias, Y. (2001) Quantile regression for duration data: A reappraisal of the Pennsylvania reemployment bonus experiments. Empirical Economics 26, 199220.CrossRefGoogle Scholar
Kong, E., Linton, O., & Xia, Y. (2010) Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econometric Theory 26, 15291564.10.1017/S0266466609990661CrossRefGoogle Scholar
Liang, H., Härdle, W., & Gao, J.T. (2000) Partially Linear Models. Springer Physica-Verlag.Google Scholar
Linton, O. (1995) Second order approximation in a partially linear regression model. Econometrica 63, 10791113.CrossRefGoogle Scholar
Masry, E. (1996) Multivariate local polynomial regression for time series: Uniform strong consistency and rates. Journal of Time Series Analysis 17, 571599.10.1111/j.1467-9892.1996.tb00294.xCrossRefGoogle Scholar
Pollard, D. (1991) Asymptotics for least absolute deviation regression estimators. Econometric Theory 7, 186199.10.1017/S0266466600004394CrossRefGoogle Scholar
Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press.CrossRefGoogle Scholar
Samarov, A. (1993) Exploring regression structure using nonparametric functional estimation. Journal of the American Statistical Association 88, 836849.CrossRefGoogle Scholar
Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall.10.1007/978-1-4899-3324-9Google Scholar
Wu, T.Z., Yu, K., & Yu, Y. (2010) Single-index quantile regression. Journal of Multivariate Analysis 101, 16071621.CrossRefGoogle Scholar
Xia, Y. (2006) Asymptotic distributions for two estimators of the single-index model. Econometric Theory 22, 11121137.CrossRefGoogle Scholar
Xia, Y., Tong, H., Li, W.K., & Zhu, L. (2002) An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society Series B 64, 363410.10.1111/1467-9868.03411CrossRefGoogle Scholar
Yin, X. & Cook, R.D. (2005) Direction estimation in single-index regressions. Biometrika 92, 371384.10.1093/biomet/92.2.371CrossRefGoogle Scholar
Yu, K. & Jones, M.C. (1998) Local linear quantile regression. Journal of the American Statistical Association 93, 228238.CrossRefGoogle Scholar
Yu, Y. & Ruppert, D. (2002) Penalized spline estimation for partially linear single-index models. Journal of the American Statistical Association 97, 10421054.CrossRefGoogle Scholar