Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:28:16.204Z Has data issue: false hasContentIssue false

Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality

Published online by Cambridge University Press:  11 February 2009

Abstract

We consider the estimation and identification of the functional structures of nonlinear econometric systems of the ARCH type. We employ nonparametric kernel estimates for the nonlinear functions characterizing the systems, and we establish strong consistency along with sharp rates of convergence under mild regularity conditions. We also prove the asymptotic normality of the estimates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity. Journal of Economics 31, 307327.10.1016/0304-4076(86)90063-1CrossRefGoogle Scholar
Bradley, R.C. (1983) Approximation theorems for strongly mixing random variables. Michigan Mathematical Journal 30, 6981.10.1307/mmj/1029002789CrossRefGoogle Scholar
Brock, W., LeBaron, B. & Hsieh, D. (1991) Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence. Cambridge, Massachusetts: MIT Press.Google Scholar
Carroll, R. (1982) Adapting for heteroscedasticity in linear models. Annals of Statistics 10, 12241233.Google Scholar
Chan, K.S. & Tong, H. (1985) On the use of deterministic Lyapunov function for the ergodicity of stochastic difference equations. Advances in Applied Probability 17, 666678.10.2307/1427125CrossRefGoogle Scholar
Chen, R. & Tsay, R. (1992) On the ergodicity of TAR(l) processes. Annals of Applied Probability 1, 613634.Google Scholar
Collomb, G. & Hardle, W. (1986) Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stochastic Processes and Their Applications 23, 7789.10.1016/0304-4149(86)90017-7CrossRefGoogle Scholar
Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 9871008.10.2307/1912773CrossRefGoogle Scholar
Engle, R.F. & Gonzāles-Rivera, G. (1991) Semiparametric ARCH models. Journal of Business and Economic Statistics 9, 345359.Google Scholar
Engle, R.F. & Ng, V.K. (1991) Measuring and Testing the Impact of News on Volatility. Discussion paper, Department of Economics, University of California, San Diego.10.3386/w3681CrossRefGoogle Scholar
Fan, J. & Masry, E. (1993) Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes. Journal of Multivariate Analysis 43, 237271.10.1016/0047-259X(92)90036-FCrossRefGoogle Scholar
Granger, C.W.J. & Teräsvirta, T. (1993) Modelling Nonlinear Dynamic Relationships. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hall, P. & Heyde, C. (1980) Martingale Limit Theory and Its Application. New York: Academic Press.Google Scholar
Mack, Y.P. & Silverman, B.W. (1982) Weak and strong uniform consistency of kernel regression estimates. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 61, 405415.10.1007/BF00539840CrossRefGoogle Scholar
Masry, E. (1993) Regression estimation with errors-in-variables for stationary processes. Nonparametric Statistics 3, 1336.10.1080/10485259308832569CrossRefGoogle Scholar
Pagan, A. & Ullah, A. (1988) The econometric analysis of models with risk terms. Journal of Applied Econometrics 3, 87105.10.1002/jae.3950030202CrossRefGoogle Scholar
Pham, D.T. (1986) The mixing property of bilinear and generalized random coefficient autoregressive models. Stochastic Processes and Their Applications 23, 291300.Google Scholar
Priestley, M.B. (1988) Nonlinear and Non-Stationary Time Series Analysis. London: Academic Press.Google Scholar
Robinson, P.M. (1983) Nonparametric estimators for time series. Journal of Time Series Analysis 4, 185207.10.1111/j.1467-9892.1983.tb00368.xCrossRefGoogle Scholar
Robinson, P.M. (1988) Root-N-consistent semiparametric regression. Econometrica 56, 931954.10.2307/1912705CrossRefGoogle Scholar
Rosenblatt, M. (1969) Conditional probability density and regression estimates. In Krishnaiah, P.R. (ed.), Multivariate Analysis II, pp. 2531. New York: Academic Press.Google Scholar
Roussas, G.G. (1990) Nonparametric regression estimation under mixing conditions. Stochastic Processes and Their Applications 36, 107116.10.1016/0304-4149(90)90045-TCrossRefGoogle Scholar
Stone, C.J. (1982) Optimal global rates of convergence for nonparametric regression. Annals of Statistics 10, 10401053.10.1214/aos/1176345969CrossRefGoogle Scholar
Teräsvirta, T., Tjøstheim, D. & Granger, C.W.J. (1994) Aspects of modelling nonlinear time series. In Engle, R.F. & McFadden, D.L. (eds.), Handbook of Econometrics, vol. 4, pp. 29172960. Amsterdam: North Holland.Google Scholar
Tjøstheim, D. (1990) Non-linear time series and Markov chains. Advances in Applied Probability 22, 587611.10.2307/1427459CrossRefGoogle Scholar
Tjøstheim, D. & Auestad, B. (1994) Nonparametric identification of non-linear time series: Selecting significant lags. Journal of the American Statistical Association 89, 14101419.Google Scholar
Tong, H. (1990) Non-Linear Time Series. A Dynamic System Approach. Oxford: Oxford University Press.CrossRefGoogle Scholar
Tran, L.T. (1990) Kernel Density Regression Estimation for Dependent Random Variables and Time Series. Manuscript.10.1016/0047-259X(90)90059-QCrossRefGoogle Scholar
Tweedie, R.L. (1975) Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stochastic Processes and Their Applications 3, 385403.10.1016/0304-4149(75)90033-2CrossRefGoogle Scholar
Tweedie, R.L. (1988) Invariant measures for Markov chains with no irreducibility assumptions. Journal of Applied Probability (A Celebration of Applied Probability) 25A, 275285.Google Scholar
Volkonskii, V.A. & Rozanov, Yu. A. (1959) Some limit theorems for random functions. Theory of Probability and Application 4, 178197.10.1137/1104015CrossRefGoogle Scholar
Wheeden, R.L. & Zygmund, A. (1977) Measure and Integral. New York: Marcel Dekker.10.1201/b15702CrossRefGoogle Scholar