Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:29:07.296Z Has data issue: false hasContentIssue false

LONG AND SHORT MEMORY CONDITIONAL HETEROSKEDASTICITY IN ESTIMATING THE MEMORY PARAMETER OF LEVELS

Published online by Cambridge University Press:  01 June 1999

P.M. Robinson
Affiliation:
London School of Economics
M. Henry
Affiliation:
London School of Economics

Abstract

Semiparametric estimates of long memory seem useful in the analysis of long financial time series because they are consistent under much broader conditions than parametric estimates. However, recent large sample theory for semiparametric estimates forbids conditional heteroskedasticity. We show that a leading semiparametric estimate, the Gaussian or local Whittle one, can be consistent and have the same limiting distribution under conditional heteroskedasticity as under the conditional homoskedasticity assumed by Robinson (1995, Annals of Statistics 23, 1630–61). Indeed, noting that long memory has been observed in the squares of financial time series, we allow, under regularity conditions, for conditional heteroskedasticity of the general form introduced by Robinson (1991, Journal of Econometrics 47, 67–84), which may include long memory behavior for the squares, such as the fractional noise and autoregressive fractionally integrated moving average form, and also standard short memory ARCH and GARCH specifications.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)