No CrossRef data available.
Article contents
Interviewed by Grant H. Hillier and Christopher L. Skeels
Part of:
ET Interviews
Published online by Cambridge University Press: 11 February 2009
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- ET Interview
- Information
- Copyright
- Copyright © Cambridge University Press 1996
References
REFERENCES
Appell, P. & Kampe de Feriet, J. (1926) Fonctions Hypergeome'triques et Hyperspheriques. Paris: Polynomes d' Hermite.Google Scholar
Bennett, J.H. (1990) Statistical Inference and Analysis: Selected Correspondence of R. A. Fisher. Oxford: Oxford University Press.CrossRefGoogle Scholar
Blaschke, W. (1935) Integralgeomethe. Actualites Scientifiques et Industrielles, vol. 252. Paris: Herman.Google Scholar
Bliss, C.I. (1935) The calculation of the dosage-mortality curve. Annals of Applied Biology 22, 134–167.CrossRefGoogle Scholar
Brien, C.J., A.T. James, & Venables, W.N. (1988) An analysis of correlation matrices: Variables cross-classified by two factors. Biometrika 75, 469–476.CrossRefGoogle Scholar
Brien, C.J., W.N. Venables, A.T. James, & Mayo, O. (1984) An analysis of correlation matrices: Equal correlations. Biometrika 71, 545–554.CrossRefGoogle Scholar
Cartan, E. (1929) Sur la determination d'un systeme orthogonal complet dans une espace de Rie-mann symetrique clos. Rendiconti Circolo Matematico di Palermo 53, 217–252. (Reprinted, in Oeuvres Complete, pt. 1, vol. 2, pp. 1045–1080, 1952. Paris: Cauthier Villars.)Google Scholar
Chikuse, Y. & Davis, A.W. (1986) A survey on the invariant polynomials with matrix arguments in relation to econometric distribution theory. Econometric Theory 2, 232–248.CrossRefGoogle Scholar
Choi, I. & Phillips, P.C.B. (1992) Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations. Journal of Econometrics 51, 113–150.CrossRefGoogle Scholar
Constantine, A.G. (1966) The distribution of Hotelling's generalized T20. Annals of Mathematical Statistics 37, 215–225.CrossRefGoogle Scholar
Constantine, A.G. & James, A.T. (1958) On the general canonical correlation distribution. Annals of Mathematical Statistics 29, 1146–1166.CrossRefGoogle Scholar
Davis, A.W. (1979) Invariant polynomials with two matrix arguments extending the zonal poly-nomials: Applications to multivariate distribution theory. Annals of the Institute of Statistical Mathematics 31 (A), 465–485.Google Scholar
Farrell, R.H. (1976) Techniques of Multivariate Calculation. New York: Springer-Verlag.CrossRefGoogle Scholar
Farrell, R.H. (1985) Multivariate Calculation: Use of Continuous Groups. New York: Springer-Verlag.CrossRefGoogle Scholar
Fisher, R.A. (1935a) The case of zero survivors in probit assays. Annals of Applied Biology 22, 164–165.Google Scholar
Fisher, R.A. (1939) The sampling distribution of some statistics obtained from non-linear equations. Annals of Eugenics 9, 238–249.CrossRefGoogle Scholar
Haar, A. (1933) Der Maflbegriff in der Theorie der kontinuierlichen Gruppen. Annals of Mathematics 34, 147–169.CrossRefGoogle Scholar
Hadamard, J.S. (1945) An Essay on the Psychology of Invention in the Mathematical Field. New York: Dover.Google Scholar
Hannan, E.J. (1965) Croup Representations and Applied Probability. London: Methuen & Co.Google Scholar
Herz, C.S. (1955) Bessel functions of matrix argument. Annals of Mathematics 61, 474–523.CrossRefGoogle Scholar
Hsu, P.L. (1939) On the distribution of the roots of certain determinantal equations. Annals of Eugenics 9, 250–258.CrossRefGoogle Scholar
Hurwitz, A. (1897) Uber die Erzeugung der Invarianten durch Integration. Nachrichten von der koniglichen Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische, pp. 71-90. (Reprinted 1933, in Mathematische Werke von Adolf Hurwitz. Band II: Zahlentheorie, Algebra und Geometrie, pp. 546-564, Basel: Emil Birkhauser & Cie.)CrossRefGoogle Scholar
James, A.T. (1954) Normal multivariate analysis and the orthogonal group. Annals of Mathematical Statistics 25, 40–75.CrossRefGoogle Scholar
James, A.T. (1955) The noncentral Wishart distribution. Proceedings of the Royal Society (London), Series A 229, 364–366.Google Scholar
James, A.T. (1957) The relationship algebra of an experimental design. Annals of Mathematical Statistics 27, 993–1002.CrossRefGoogle Scholar
James, A.T. (1960) The distribution of the latent roots of the covariance matrix. Annals of Mathematical Statistics 31, 151–158.CrossRefGoogle Scholar
James, A.T. (1961) Zonal polynomials of the real positive definite symmetric matrices. Annals of Mathematics 74, 456–469.CrossRefGoogle Scholar
James, A.T. (1964) Distributions of matrix variates and latent roots derived from normal samples. Annals of Mathematical Statistics 35, 475–501.CrossRefGoogle Scholar
James, A.T. (1982) Analyses of variance determined by symmetry and combinatorial properties of zonal polynomials. In Kallianpur, G.Krishnaiah, P.R., & Ghosh, J.K. (eds.), Statistics and Probability: Essays in Honour ofC.R. Rao, pp. 329–341. Amsterdam: North-Holland.Google Scholar
James, A.T. & Constantine, A.G. (1974) Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proceedings of the London Mathematical Society 28, 174–192.CrossRefGoogle Scholar
James, A.T. & Wilkinson, G.N. (1971) Factorization of the residual operator and canonical decomposition of nonorthogonal factors in the analysis of variance. Biometrika 58, 279–294.CrossRefGoogle Scholar
Montgomery, D. & Zippin, L. (1955) Topological Transformation Groups. New York: Interscience.Google Scholar
Muirhead, R.J. (1982) Aspects of Multivariate Statistical Theory. New York: John Wiley & Sons.CrossRefGoogle Scholar
Olkin, I. (1953) Note on the Jacobians of certain matrix transformations useful in multivariate analysis. Biometrika 40, 43–46.Google Scholar
Peter, F. & Weyl, H. (1927) Die Vollstandigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Mathematische Annalen 97, 737–755.CrossRefGoogle Scholar
Phillips, P.C.B. (1989) Partially identified econometric models. Econometric Theory 5, 181–240.CrossRefGoogle Scholar
Savage, L.J. (1976) On rereading Fisher. Annals of Statistics 4, 441-483 (with discussion, pp. 483-500).CrossRefGoogle Scholar
Weyl, H. (1946) The Classical Groups, Their Invariants and Representations. Princeton, NJ: Princeton University Press.Google Scholar
Wilks, H. (1943) Mathematical Statistics, lithograph. Princeton, NJ: Princeton University Press.Google Scholar