Published online by Cambridge University Press: 11 February 2009
In this paper I examine graphical comparisons of one-dimensional (or marginal) distribution functions of alternative estimators. It is shown that areas under the c.d.f. (cumulative distribution function) curve can be given a decision-theoretic interpretation as risk under a bounded absolute-error loss function. I also show that by a simple rescaling of the graph's axes, graphical areas are created which can be interpreted as risk under bounded squared-error loss. The bounded loss functions are applied to compare graphically and numerically the risk of exact distributions of the limited-information maximum likelihood and two-stage least-squares estimators in a simultaneous equations model.