Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T19:24:22.299Z Has data issue: false hasContentIssue false

The GLS Transformation Matrix and a Semi-recursive Estimator for the Linear Regression Model with ARMA Errors

Published online by Cambridge University Press:  18 October 2010

John W. Galbraith
Affiliation:
McGill University
Victoria Zinde-Walsh
Affiliation:
McGill University

Abstract

For a general stationary ARMA(p,q) process u we derive the exact form of the orthogonalizing matrix R such that RR = Σ−1, where Σ = E(uu′) is the covariance matrix of u, generalizing the known formulae for AR(p) processes. In a linear regression model with an ARMA(p,q) error process, transforming the data by R yields a regression model with white-noise errors. We also consider an application to semi-recursive (being recursive for the model parameters, but not for the parameters of the error process) estimation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Amemiya, T.Advanced Econometrics. Cambridge: Harvard University Press, 1985.Google Scholar
2.Box, G.E.P. & Jenkins, G.M.. Time Series Analysis Forecasting and Control. San Francisco: Holden-Day, 1970.Google Scholar
3.Brown, R.L., Durbin, J. & Evans, J.M.. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Soceity B (1975): 149192.Google Scholar
4.Dufour, J.-M.Recursive stability analysis of linear regression relationships. Journal of Econometrics 19 (1982): 3176.Google Scholar
5.Franke, J.A Levinson-Durbin recursion for autoregressive-moving average processes. Biometrika 72 (1985): 573581.CrossRefGoogle Scholar
6.Hannan, E. J. & Deistler, M.. The Statistical Theory of Linear Systems. New York: Wiley, 1988.Google Scholar
7.Hannan, E.J. & Kavalieris, L.. A method for autoregressive-moving average estimation. Biometrika 72 (1984): 273280.Google Scholar
8.Hannan, E.J., Kavalieris, L. & Mackisack, M.. Recursive estimation of linear systems. Biometrika 73 (1986): 119133.CrossRefGoogle Scholar
9.Hannan, E.J. & McDougall, A.J.. Regression procedures for ARMA estimation. Journal of the American Statistical Association 83 (1988): 490498.Google Scholar
10.Hannan, E.J. & Rissanen, J.. Recursive estimation of mixed autoregressive-moving average order. Biometrika 69 (1982): 8194.Google Scholar
11.Harvey, A.C.The Econometric Analysis of Time Series. Oxford: Philip Allan, 1981.Google Scholar
12.Harvey, A.C. & Phillips, G.D.A.. Maximum likelihood estimation of regression models with autoregressive-moving average disturbances. Biometrika 66 (1979): 49–58.Google Scholar
13.Hendry, D.F.PC-GIVE: An Interactive Econometric Modelling System. Oxford: Institute of Economics and Statistics, 1989.Google Scholar
14.Hendry, D.F. & Neale, A.J.. The Impact of Structural Breaks on Unit-Root Tests. Mimeo., Nuffield College, Oxford, 1989.Google Scholar
15.Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H. & Lee, T.C.. The Theory and Practice of Econometrics, 2nd ed. New York: Wiley, 1985.Google Scholar
16.Ljung, L. & Soderstrom, T.. Theory and Practice of Recursive Identification. Cambridge: MIT Press, 1983.Google Scholar
17.Ploberger, W., Kontrus, K. & Kramer, W.. A new test for structural stability in linear regression. Journal of Econometrics 40 (1989); 307318.CrossRefGoogle Scholar
18.Said, S.E. & Dickey, D.A.. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71 (1984): 599607.Google Scholar
19.Spanos, A.Statistical Foundations of Econometric Modelling. Cambridge: Cambridge University Press, 1986.Google Scholar
20.Zinde-Walsh, V.Some exact formulae for autoregressive-moving average processes. Econometric Theory 4 (1988): 384–402. Errata, Econometric Theory 6 (1990): 293.Google Scholar
21.Zinde-Walsh, V. & Galbraith, J.W.. Estimation of a linear regression model with stationary ARMA(p,q) errors. Journal of Econometrics 47 (1991): 333357.CrossRefGoogle Scholar