Published online by Cambridge University Press: 22 August 2018
We consider inference about coefficients on a small number of variables of interest in a linear panel data model with additive unobserved individual and time specific effects and a large number of additional time-varying confounding variables. We suppose that, in addition to unrestricted time and individual specific effects, these confounding variables are generated by a small number of common factors and high-dimensional weakly dependent disturbances. We allow that both the factors and the disturbances are related to the outcome variable and other variables of interest. To make informative inference feasible, we impose that the contribution of the part of the confounding variables not captured by time specific effects, individual specific effects, or the common factors can be captured by a relatively small number of terms whose identities are unknown. Within this framework, we provide a convenient inferential procedure based on factor extraction followed by lasso regression and show that the procedure has good asymptotic properties. We also provide a simple k-step bootstrap procedure that may be used to construct inferential statements about the low-dimensional parameters of interest and prove its asymptotic validity. We provide simulation evidence about the performance of our procedure and illustrate its use in an empirical application.
The authors are grateful to Shakheeb Khan, Roger Moon, and seminar participants at the Australasian Meetings of the Econometric Society, Inference in Large Econometric Models at Montréal, University of Chile, National University of Singapore, Xiamen University, University of Toronto, and Stevens Institute of Technology for helpful comments. This material is based upon work supported by the National Science Foundation under Grant No. 1558636 and the University of Chicago Booth School of Business. First version: June 2016. This version: July 23, 2018.