Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T18:08:52.307Z Has data issue: false hasContentIssue false

Estimating Error Component Models With General MA(q) Disturbances

Published online by Cambridge University Press:  11 February 2009

Abstract

This paper provides a simple estimation method for an error component regression model with general MA(q) remainder disturbances. The estimation method utilizes the transformation derived by Baltagi and Li [3] for an error component model with autoregressive remainder disturbances, and a standard orthogonalizing algorithm for the general MA(q) model. This estimation method is computationally simple utilizing only least-squares regressions. This is important for panel data regressions where brute force GLS is in many cases not feasible.This estimation method performs well relative to true GLS in Monte-Carlo experiments.

Type
Brief Report
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ansley, C.F. An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66 (1979): 5965.10.1093/biomet/66.1.59CrossRefGoogle Scholar
2. Balestra, P. A., note on the exact transformation associated with the first-order moving average process. Journal of Econometrics 14 (1980): 381394.10.1016/0304-4076(80)90034-2Google Scholar
3. Baltagi, B.H. & Li, Q.. A transformation that will circumvent the problem of autocorrelation in an error component model. Journal of Econometrics 48 (1991): 385393.10.1016/0304-4076(91)90070-TCrossRefGoogle Scholar
4. Brockwell, P. J. & Davis, R.A.. Time series: Theory and Methods. New York: Springer-Verlag, 1991.10.1007/978-1-4419-0320-4CrossRefGoogle Scholar
5. Fuller, W.A. & Battese, G.E.. Estimation of linear models with cross-error structure. Journal of Econometrics 2 (1974): 6778.10.1016/0304-4076(74)90030-XCrossRefGoogle Scholar
6. Galbraith, J.W. & Zinde-Walsh, V.. The GLS transformation matrix and a semi-recursive estimator for the linear regression model with ARMA errors. Econometric Theory 8 (1992a): 95–111.10.1017/S0266466600010756CrossRefGoogle Scholar
7. Galbraith, J.W. & Zinde-Walsh, V.. Transforming the error-component model for estimation with general ARMA disturbances. Unpublished paper, McGill University, Montreal, Quebec, Canada, 1992b.Google Scholar
8. Hannan, E.J. & Rissanen, J.. Recursive estimation of ARMA order. Biometrika 69 (1982): 8194.10.1093/biomet/69.1.81CrossRefGoogle Scholar
9. Hsiao, C. Analysis of Panel Data. Cambridge: Cambridge University Press, 1986.Google Scholar
10. Lee, Lung-Fei. Estimation of autocorrelated error components model with panel data. Working Paper, Department of Economics, University of Minnesota, 1979.Google Scholar
11. Li, Q. Estimating a linear regression model with general MA(q) disturbances. Working Paper, University of Guelph, Ontario, Canada, 1992.Google Scholar
12. Lillard, L.A. & Willis, R. J.. Dynamic aspects of earning mobility. Econometrica 46 (1978): 9851012.10.2307/1911432CrossRefGoogle Scholar
13. MaCurdy, T.A. The use of time series processes to model the error structure of earnings in a longitudinal data analysis. Journal of Econometrics 18 (1982): 83114.10.1016/0304-4076(82)90096-3CrossRefGoogle Scholar
14. MacDonald, G.M. & MacKinnon, J.G.. Convenient methods for estimation of linear regression models with MA(1) errors. Canadian Journal of Economics 18 (1985): 106116.10.2307/135116CrossRefGoogle Scholar
15. Magnus, J.R. & Woodland, A.D.. On the maximum likelihood estimation of multivariate regression models containing serially correlated error components. International Economic Review 29 (1988): 707725.10.2307/2526829Google Scholar
16. Nerlove, M. Further evidence on the estimation of dynamic economic relations from a time-series of cross sections. Econometrica 39 (1971): 359382.10.2307/1913350CrossRefGoogle Scholar
17. Nicholls, D.F., Pagan, A.R. & Terrell, R.D.. The estimation and use of models with moving average disturbance terms: a survey. International Economic Review 16 (1975): 113134.10.2307/2525888CrossRefGoogle Scholar
18. Pesaran, M.H. Exact maximum likelihood estimation of a regression equation with a first-order moving-average error. Review of Economic Studies 40 (1973): 529536.10.2307/2296586CrossRefGoogle Scholar
19. Phillips, P.C.B. & Ploberger, W.. Time series modeling with a Bayesian frame of reference: concepts, illustrations and asymptotics. Cowles Foundation Discussion Paper No. 1038, 1992a.Google Scholar
20. Phillips, P.C.B. & Ploberger, W.. Posterior odds testing for a unit root with data-based model selection. Cowles Foundation Discussion Paper No. 1017, 1992b.Google Scholar
21. Revankar, N.S. Error component models with serially correlated time effects. Journal of the Indian Statistical Association 17 (1979): 137160.Google Scholar
22. Schwarz, G. Estimating the dimension of a model. Annals of Statistics 6 (1978): 461464.10.1214/aos/1176344136CrossRefGoogle Scholar
23. Ullah, A., Vinod, H.D. & Singh, R.S.. Estimation of linear models with moving average disturbances. Journal of Quantitative Economics 2 (1986): 137152.Google Scholar
24. Wansbeek, T. & Kapteyn, A.. A simple way to obtain the spectral decomposition of variance components models for balanced data. Communications in Statistics All (1982): 21052112.10.1080/03610928208828373Google Scholar
25. Wansbeek, T. & Kapteyn, A. A note on spectral decomposition and maximum likelihood estimation of ANOVA models with balanced data. Statistics and Probability Letters 1 (1983): 213215.10.1016/0167-7152(83)90033-0CrossRefGoogle Scholar