Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:50:51.260Z Has data issue: false hasContentIssue false

Bayes Methods and Unit Roots

Editors' Introduction

Published online by Cambridge University Press:  11 February 2009

Peter C.B. Phillips
Affiliation:
Cowles Foundation for Research in Economics Yale University
Herman K. Van Dijk
Affiliation:
Econometric Institute and Tinbergen Institüt Erasmus University Rotterdam

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chan, N.H. & Wei, C.Z.. Limiting distributions of least squares estimates of unstable autoregressive processes. Annals of Statistics 16 (1988): 367401.CrossRefGoogle Scholar
2.DeJong, D.N. & Whiteman, C.H.. Reconsidering trends and random walks in macroeconomic time series. Journal of Monetary Economics 28 (1991): 221254.CrossRefGoogle Scholar
3.Dickey, D.A. & Fuller, W.A.. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74 (1979): 427431.Google Scholar
4.Dickey, D.A. & Fuller, W.A.. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49 (1981): 10571072.CrossRefGoogle Scholar
5.Elliott, G., Rothenberg, T. & Stock, J.. Efficient Tests for an Autoregressive Unit Root. Mimeo, 1992.CrossRefGoogle Scholar
6.Fuller, W.A.Introduction to Statistical Time Series. New York: Wiley, 1976.Google Scholar
7.Harrison, P.J. & Stevens, C.F.. Bayesian forecasting (with discussion). Journal of the Royal Statistical Society, Series B 38 (1976): 205247.Google Scholar
8.Jeganathan, P.On the asymptotic behavior of least squares estimators in AR time series with roots near the unit circle. Econometric Theory 7 (1991): 269306.CrossRefGoogle Scholar
9.Kleibergen, F. & van Dijk, H.K.. Non-stationarity in GARCH models: A Bayesian analysis. Journal of Applied Econometrics 8 (1993): S41S61.CrossRefGoogle Scholar
10.Kwiatkowski, D., Phillips, P. Schmidt, P.C.B. & Shin, Y.. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics 54 (1992): 159179.CrossRefGoogle Scholar
11.Nelson, C.R. & Plosser, C.. Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics 10 (1982): 139162.CrossRefGoogle Scholar
12.Phillips, P.C.B.Time series regression with a unit root. Econometrica 55 (1987): 277301.CrossRefGoogle Scholar
13.Phillips, P.C.B.To criticize the critics: An objective Bayesian analysis of stochastic methods. Journal of Applied Econometrics 6 (1991): 333364.CrossRefGoogle Scholar
14.Phillips, P.C.B. & Ploberger, W.. Time Series Modeling with a Bayesian Frame of Reference: Concepts, Illustrations and Asymptotics. Cowles Foundation discussion paper, Yale University, rev., 1992. (original draft, 1991)Google Scholar
15.Saikkonen, P. & Luukkonen, R.. Testing for a moving average unit root in autoregressive moving average models. Journal of the American Statistical Association 88 (1993): 596601.CrossRefGoogle Scholar
16.Schwarz, G.Estimating the dimension of a model. Annals of Statistics 6 (1978): 461464.CrossRefGoogle Scholar
17.Sims, C.A.Bayesian skepticism on unit root econometrics. Journal of Economic Dynamics and Control 12 (1988): 436474.CrossRefGoogle Scholar
18.Sims, C.A.Asymptotic Behavior of the Likelihood Function in an Autoregression with a Unit Root. Mimeo, Yale University, 1990.Google Scholar
19.Sims, C.A. & Uhlig, H.. Understanding unit rooters: A helicopter tour. Econometrica 59 (1991): 15911600.CrossRefGoogle Scholar
20.Schotman, P.C. & van Dijk, H.K.. A Bayesian analysis of the unit root in real exchange rates. Journal of Econometrics 49 (1991): 195238.CrossRefGoogle Scholar
21.Solo, V. The order of differencing in ARIMA models. Journal of the American Statistical Association 79 (1984): 916921.CrossRefGoogle Scholar
22.West, M. & Harrison, P.J.. Bayesian Forecasting and Dynamic Models. New York: Springer-Verlag, 1989.CrossRefGoogle Scholar