Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T11:34:31.011Z Has data issue: false hasContentIssue false

An LM Test for a Unit Root in the Presence of a Structural Change

Published online by Cambridge University Press:  11 February 2009

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Brief Report
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banerjee, A., Lumsdaine, R.L. & Stock, J.H. (1992) Recursive and sequential tests of the unit root and trend break hypothesis: Theory and international evidence. Journal of Business & Economic Statistics 10, 271287.CrossRefGoogle Scholar
Christiano, L. (1992) Searching for a break in GNP. Journal of Business & Economic Statistics 10, 237250.CrossRefGoogle Scholar
Dickey, D.A. & Fuller, W.A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74, 427431.Google Scholar
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. & Shin, Y. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics 54, 159178.10.1016/0304-4076(92)90104-YCrossRefGoogle Scholar
Nelson, C.R. & Plosser, C.I. (1982) Trends versus random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics 10, 139162.10.1016/0304-3932(82)90012-5CrossRefGoogle Scholar
Park, J.Y. & Phillips, P.C.B. (1988) Statistical inference in regressions with integrated processes: Part I. Econometric Theory 4, 468498.10.1017/S0266466600013402CrossRefGoogle Scholar
Perron, P. (1989) The great crash, the oil price shock, and the unit root hypothesis. Econometrica 57, 13611401.10.2307/1913712CrossRefGoogle Scholar
Perron, P. (1990) Further Evidence of Breaking Trend Functions in Macroeconomic Variables. Research memorandum 350, Princeton University.Google Scholar
Perron, P. & Vogelsang, T.J. (1993) Erratum. Econometrica 61, 248249.Google Scholar
Phillips, P.C.B. & Loretan, M. (1991) Estimating longrun economic equilibria. The Review of Economic Studies 58, 407436.10.2307/2298004CrossRefGoogle Scholar
Phillips, P.C.B. & Perron, P. (1988) Testing for a unit root in time series regression. Biometrika 75, 335346.10.1093/biomet/75.2.335CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986) Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press.Google Scholar
Said, S.E. & Dickey, D.A. (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71, 599608.10.1093/biomet/71.3.599CrossRefGoogle Scholar
Schmidt, P. & Lee, J. (1991) A modification of the Schmidt-Phillips unit root test. Economics Letters 36, 285289.10.1016/0165-1765(91)90034-ICrossRefGoogle Scholar
Schmidt, P. & Phillips, P.C.B. (1992) LM tests for a unit root in the presence of deterministic trends. Oxford Bulletin of Economics and Statistics 54, 257287.10.1111/j.1468-0084.1992.tb00002.xCrossRefGoogle Scholar
Zivot, E. & Andrews, D.W.K. (1992) Further evidence on the great crash, the oil price shock and the unit root hypothesis. Journal of Business & Economic Statistics 10, 251270.CrossRefGoogle Scholar