Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T00:53:22.488Z Has data issue: false hasContentIssue false

TESTING A CLASS OF SEMI- OR NONPARAMETRIC CONDITIONAL MOMENT RESTRICTION MODELS USING SERIES METHODS

Published online by Cambridge University Press:  05 December 2022

Jesper Riis-Vestergaard Sørensen*
Affiliation:
University of Copenhagen
*
Address correspondence to Jesper Riis-Vestergaard Sørensen, Department of Economics, University of Copenhagen, Copenhagen, Denmark; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper proposes a new test for a class of conditional moment restrictions (CMRs) whose parameterization involves unknown, unrestricted conditional expectation functions. Motivating examples of such CMRs arise from models of discrete choice under uncertainty including certain static games of incomplete information. The proposed test may be viewed as a semi-/nonparametric extension of the Bierens (1982, Journal of Econometrics 20, 105–134) goodness-of-fit test of a parametric model for the conditional mean. Estimating conditional expectations using series methods and employing a Gaussian multiplier bootstrap to obtain critical values, the test is shown to be asymptotically correctly sized and consistent. Simulation studies indicate good finite-sample properties. In an empirical application, the test is used to study the validity of a game-theoretical model for discount store market entry, treating equilibrium beliefs as nonparametric conditional expectations. The test indicates that Walmart and Kmart entry decisions do not result from a static discrete game of incomplete information with linearly specified profits.

Type
ARTICLES
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Footnotes

Parts of this paper derive from my doctoral dissertation, completed under the guidance and encouragement of Denis Chetverikov and Jinyong Hahn. I thank Andres Santos, Rasmus Søndergaard Pedersen, the Editor, and two anonymous referees for highly constructive comments that helped improve this paper. All remaining errors are my own.

References

REFERENCES

Ahn, H. & Manski, C.F. (1993) Distribution theory for the analysis of binary choice under uncertainty with nonparametric estimation of expectations. Journal of Econometrics 56, 291321.CrossRefGoogle Scholar
Ai, C. & Chen, X. (2003) Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71, 17951843.CrossRefGoogle Scholar
Bajari, P., Hong, H., Krainer, J., & Nekipelov, D. (2010) Estimating static models of strategic interactions. Journal of Business & Economic Statistics 28, 469482.CrossRefGoogle Scholar
Belloni, A., Chernozhukov, V., Chetverikov, D., & Kato, K. (2015) Some new asymptotic theory for least squares series: Pointwise and uniform results. Journal of Econometrics 186, 345366.CrossRefGoogle Scholar
Bierens, H.J. (1982) Consistent model specification tests. Journal of Econometrics 20, 105134.CrossRefGoogle Scholar
Bierens, H.J. (1990) A consistent conditional moment test of functional form. Econometrica 58, 14431458.CrossRefGoogle Scholar
Bierens, H.J. (2017) Econometric Model Specification: Consistent Model Specification Tests and Semi-Nonparametric Modeling and Inference . World Scientific Publishing Co. Pte. Ltd.CrossRefGoogle Scholar
Bierens, H.J. & Ploberger, W. (1997) Asymptotic theory of integrated conditional moment tests. Econometrica 65, 11291151.CrossRefGoogle Scholar
Bjorn, P.A. & Vuong, Q.H. (1984) Simultaneous Equations Models for Dummy Endogenous Variables: A Game Theoretic Formulation with an Application to Labor Force Participation. Social Science Working paper 537, Caltech.Google Scholar
Bravo, F. (2012) Generalized empirical likelihood testing in semiparametric conditional moment restrictions models. The Econometrics Journal 15, 131.CrossRefGoogle Scholar
Card, D. & Giuliano, L. (2013) Peer effects and multiple equilibria in the risky behavior of friends. Review of Economics and Statistics 95, 11301149.CrossRefGoogle Scholar
Chen, X. (2007) Large sample sieve estimation of semi-nonparametric models. In Handbook of Econometrics . Vol. 6. Elsevier, pp. 55495632.CrossRefGoogle Scholar
Chen, X. & Pouzo, D. (2009) Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. Journal of Econometrics 152, 4660.CrossRefGoogle Scholar
Chen, X. & Pouzo, D. (2012) Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica 80, 277321.Google Scholar
Chen, X. & Pouzo, D. (2015) Sieve Wald and QLR inferences on semi/nonparametric conditional moment models. Econometrica 83, 10131079.CrossRefGoogle Scholar
Davydov, Y.A., Lifshits, M.A., & Smorodina, N.V. (1998) Local Properties of Distributions of Stochastic Functionals . American Mathematical Society.CrossRefGoogle Scholar
DeVore, R.A. & Lorentz, G.G. (1993) Constructive Approximation . Grundlehren der mathematischen Wissenschafte, vol. 303. Springer Science & Business Media.CrossRefGoogle Scholar
Donald, S.G. & Newey, W.K. (1994) Series estimation of semilinear models. Journal of Multivariate Analysis 50, 3040.CrossRefGoogle Scholar
Ellickson, P.B. & Misra, S. (2011) Structural workshop paper—estimating discrete games . Marketing Science 30, 9971010.CrossRefGoogle Scholar
Fan, Y. & Li, Q. (2000) Consistent model specification tests: Kernel-based tests versus Bierens’ ICM tests. Econometric Theory 16, 10161041.CrossRefGoogle Scholar
Hahn, J., Moon, H.R., & Snider, C. (2017) LM test of neglected correlated random effects and its application. Journal of Business & Economic Statistics 35, 359370.CrossRefGoogle Scholar
Hall, A.R. & Inoue, A. (2003) The large sample behaviour of the generalized method of moments estimator in misspecified models. Journal of Econometrics 114, 361394.CrossRefGoogle Scholar
Härdle, W. & Mammen, E. (1993) Comparing nonparametric versus parametric regression fits. Annals of Statistics 21, 19261947.CrossRefGoogle Scholar
Hong, H. & Li, J. (2022) Rate-Adaptive Bootstrap for Possibly Misspecified GMM. Working paper, UC Santa Cruz.Google Scholar
Honoré, B.E. & Kyriazidou, E. (2000) Panel data discrete choice models with lagged dependent variables. Econometrica 68, 839874.CrossRefGoogle Scholar
Honoré, B.E. & Tamer, E. (2006) Bounds on parameters in panel dynamic discrete choice models. Econometrica 74, 611629.CrossRefGoogle Scholar
Horowitz, J.L. (2006) Testing a parametric model against a nonparametric alternative with identification through instrumental variables. Econometrica 74, 521538.CrossRefGoogle Scholar
Jia, P. (2008) What happens when Wal-Mart comes to town: An empirical analysis of the discount retailing industry. Econometrica 76, 12631316.Google Scholar
Kosorok, M.R. (2008) Introduction to Empirical Processes and Semiparametric Inference . Springer Science & Business Media.CrossRefGoogle Scholar
Kristensen, D. (2011) Semi-nonparametric estimation and misspecification testing of diffusion models. Journal of Econometrics 164, 382403.CrossRefGoogle Scholar
Lapenta, E. (2021) A Bootstrap Specification Test for Semiparametric Models with Generated Regressors. Working paper, CREST-ENSAE.Google Scholar
Li, Q., Hsiao, C., & Zinn, J. (2003) Consistent specification tests for semiparametric/nonparametric models based on series estimation methods. Journal of Econometrics 112, 295325.CrossRefGoogle Scholar
Lorentz, G.G. (1966) Approximation of Functions . Holt, Rinehart and Winston.Google Scholar
Manski, C.F. (1991) Nonparametric estimation of expectations in the analysis of discrete choice under uncertainty. In Nonparametric and Semiparametric Methods in Econometrics and Statistics . Cambridge University Press, pp. 259275.Google Scholar
Newey, W.K. (1994) The asymptotic variance of semiparametric estimators. Econometrica 62, 13491382.CrossRefGoogle Scholar
Newey, W.K. (1995) Convergence rates for series estimators. In Maddala, G., Phillips, P.C.B., and Srinivasan, T. (eds), Advances in Econometrics and Quantitative Economics . Blackwell, pp. 254275.Google Scholar
Newey, W.K. (1997) Convergence rates and asymptotic normality for series estimators. Journal of Econometrics 79, 147168.CrossRefGoogle Scholar
Robinson, P.M. (1988) Root-N-consistent semiparametric regression. Econometrica 56, 931954.CrossRefGoogle Scholar
Sant’Anna, P.H. & Song, X. (2019) Specification tests for the propensity score. Journal of Econometrics 210, 379404.CrossRefGoogle Scholar
Schumaker, L. (2007) Spline Functions: Basic Theory . Cambridge University Press.CrossRefGoogle Scholar
Seim, K. (2006) An empirical model of firm entry with endogenous product-type choices. The Rand Journal of Economics 37, 619640.CrossRefGoogle Scholar
Song, K. (2010) Testing semiparametric conditional moment restrictions using conditional martingale transforms. Journal of Econometrics 154, 7484.CrossRefGoogle Scholar
Stinchcombe, M.B. & White, H. (1998) Consistent specification testing with nuisance parameters present only under the alternative. Econometric Theory 14, 295325.CrossRefGoogle Scholar
Stone, C.J. (1985) Additive regression and other nonparametric models. Annals of Statistics , 689705.Google Scholar
Stute, W. (1997) Nonparametric model checks for regression. Annals of Statistics 25, 613641.CrossRefGoogle Scholar
Sweeting, A. (2009) The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria. The Rand Journal of Economics 40, 710742.CrossRefGoogle Scholar
Timan, A.F. (1963) Theory of Approximation of Functions of a Real Variable . International Series of Monographs in Pure and Applied Mathematics, vol. 34. Courier Corporation.Google Scholar
van der Vaart, A.W. (2000) Asymptotic Statistics , vol. 3. Cambridge University Press.Google Scholar
van der Vaart, A.W. & Wellner, J.A. (1996) Weak Convergence and Empirical Processes . Springer.CrossRefGoogle Scholar
Zheng, J.X. (1996) A consistent test of functional form via nonparametric estimation techniques. Journal of Econometrics 75, 263289.CrossRefGoogle Scholar
Supplementary material: PDF

Sørensen supplementary material

Sørensen supplementary material

Download Sørensen supplementary material(PDF)
PDF 622.4 KB