Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-17T22:56:38.770Z Has data issue: false hasContentIssue false

SEMIPARAMETRIC IDENTIFICATION AND FISHER INFORMATION

Published online by Cambridge University Press:  08 April 2021

Juan Carlos Escanciano*
Affiliation:
Universidad Carlos III de Madrid
*
Address correspondence to Juan Carlos Escanciano, Department of Economics, Universidad Carlos III de Madrid, Getafe, Spain; e-mail: jescanci@eco.uc3m.es.

Abstract

This paper provides a systematic approach to semiparametric identification that is based on statistical information as a measure of its “quality.” Identification can be regular or irregular, depending on whether the Fisher information for the parameter is positive or zero, respectively. I first characterize these cases in models with densities linear in an infinite-dimensional parameter. I then introduce a novel “generalized Fisher information.” If positive, it implies (possibly irregular) identification when other conditions hold. If zero, it implies impossibility results on rates of estimation. Three examples illustrate the applicability of the general results. First, I consider the canonical example of average densities. Second, I show irregular identification of the median willingness to pay in contingent valuation studies. Finally, I study identification of the discount factor and average measures of risk aversion in a nonparametric Euler equation with nonparametric measurement error in consumption.

Type
ARTICLES
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

First version: September 20, 2016. Research was funded by the Spanish Programa de Generación de Conocimiento, reference number PGC2018-096732-B-I00. I would like to thank Michael Jansson, Ulrich Müller, Whitney Newey, P.C.B Phillips, Jack Porter, Pedro Sant’Anna, Ruli Xiao, two anonymous referees and seminar participants at BC, Indiana, MIT, Texas A&M, UBC, Vanderbilt, and participants of the 2018 Conference on Identification in Econometrics for useful comments. This paper is dedicated to the memory of Gary Chamberlain, whose research motivated this investigation.

References

REFERENCES

Adams, R.A. & Fournier, J.J. (2003) Sobolev Spaces. Academic Press.Google Scholar
Alan, S., Attanasio, O., & Browning, M. (2009) Estimating Euler equations with noisy data: Two exact GMM estimators. Journal of Applied Econometrics 24, 309324.CrossRefGoogle Scholar
Altonji, J.G. & Siow, A. (1987) Testing the response of consumption to income changes with noisy panel data. Quarterly Journal of Economics 102, 293328.CrossRefGoogle Scholar
Andrews, D.W.K. & Schafgans, M.A. (1998) Semiparametric estimation of the intercept of a sample selection model. Review of Economic Studies 65, 497517.CrossRefGoogle Scholar
Bajari, P., Hahn, J., Hong, H., & Ridder, G. (2011) A note on semiparametric estimation of finite mixtures of discrete choice models with application to game theoretic models. International Economic Review 52, 807824.CrossRefGoogle Scholar
Begun, J.M., Hall, W.J., Huang, W.M., & Wellner, J.A. (1983) Information and asymptotic efficiency in parametric-nonparametric models. Annals of Statistics 11, 432452.CrossRefGoogle Scholar
Bekker, P. & Wansbeek, T. (2001) Chapter 7: Identification in parametric models. In Baltagi, B. (ed.), Companion to Theoretical Econometrics’ Blackwell Companions to Contemporary Economics, pp. 144161. Basil Blackwell.Google Scholar
Bickel, P.J., Klassen, C.A.J., Ritov, Y., & Wellner, J.A. (1998) Efficient and Adaptive Estimation for Semiparametric Models. Springer-Verlag.Google Scholar
Bickel, P.J. & Ritov, Y. (1988) Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhya: The Indian Journal of Statistics, Series A 50, 381393.Google Scholar
Bonhomme, S. (2011) Panel Data, Inverse Problems, and the Estimation of Policy Parameters. Unpublished manuscript.Google Scholar
Bonhomme, S. (2012) Functional differencing. Econometrica 80, 13371385.Google Scholar
Carrasco, M., Florens, J.P., & Renault, E. (2007) Linear inverse problem in structural econometrics estimation based on spectral decomposition and regularization. In Heckman, J.J. & Leamer, E.E. (eds.), Handbook of Econometrics, vol. 6, pp. 56335751. North-Holland.CrossRefGoogle Scholar
Carson, R.T. & Hanemann, W.M. (2005) Contingent valuation. In Mäler, K.G. & Vincent, J.R. (eds.), Handbook of Environmental Economics, vol. 2, pp. 821936. Elsevier.Google Scholar
Cattaneo, M. & Escanciano, J.C. (2017) Regression Discontinuity Designs: Theory and Applications, Advances in Econometrics, vol. 38. Emerald Group Publishing.CrossRefGoogle Scholar
Cattaneo, M.D. & Jansson, M. (2019) Average Density Estimators: Efficiency and Bootstrap Consistency. Working paper, arXiv:1904.09372.Google Scholar
Chamberlain, G. (1986) Asymptotic efficiency in semi-parametric models with censoring. Journal of Econometrics 34, 305334.CrossRefGoogle Scholar
Chamberlain, G. (1992) Efficiency bounds for semiparametric regression. Econometrica 60, 567596.CrossRefGoogle Scholar
Chamberlain, G. (2010) Binary response models for panel data: Identification and information. Econometrica 78, 159168.Google Scholar
Chen, X., Chernozhukov, V., Lee, S., & Newey, W. (2014) Identification in semiparametric and nonparametric conditional moment models. Econometrica 82, 785809.Google Scholar
Chen, X. & Liao, Z. (2014) Sieve M-inference of irregular parameters. Journal of Econometrics 182, 7086.CrossRefGoogle Scholar
Chen, X. & Ludvigson, S.C. (2009) Land of addicts? An empirical investigation of habit-based asset pricing models. Journal of Applied Econometrics 24, 10571093.CrossRefGoogle Scholar
Chen, X., Pouzo, D. (2015) Sieve quasi likelihood ratio inference on semi/nonparametric conditional moment models. Econometrica 83, 10131079.CrossRefGoogle Scholar
Chen, X. & Reiss, M. (2011) On rate optimality for ill-posed inverse problems in econometrics. Econometric Theory 27, 497521.CrossRefGoogle Scholar
Chen, X. & Santos, A. (2018) Overidentification in regular models. Econometrica 86, 17711817.CrossRefGoogle Scholar
Christensen, T.M. (2017) Nonparametric stochastic discount factor decomposition. Econometrica 85, 15011536.CrossRefGoogle Scholar
Debnath, L & Mikusinski, P. (2005) Hilbert Spaces with Applications. Elsevier Academy Press.Google Scholar
Dellavigna, S. & Paserman, M.D. (2005) Job search and impatience. Journal of Labor Economics 23, 527588.CrossRefGoogle Scholar
Donoho, D.L. & Liu, R.C. (1987) Geometrizing Rates of Convergence, I. Technical report 137, Department of Statistics, University of California Berkeley.Google Scholar
Dufour, J.M. & Liang, X. (2014) Necessary and Sufficient Conditions for Nonlinear Parametric Function Identification. Unpublished manuscript.Google Scholar
Dynam, K. (2000) Habit formation in consumer preferences: Evidence from panel data. American Economic Review 90, 391402.CrossRefGoogle Scholar
Escanciano, J.C. & Hoderlein, S. (2010) Nonparametric Identification of Euler Equations. Unpublished manuscript.Google Scholar
Escanciano, J.C., Hoderlein, S., Lewbel, A., Linton, O., & Srisuma, S. (2015) Nonparametric Euler Equation Identification and Estimation. Unpublished manuscript.Google Scholar
Escanciano, J.C. & Li, W. (2021) Optimal linear instrumental variables approximations. Journal of Econometrics 221, 223246.CrossRefGoogle Scholar
Fan, J. (1991) On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics 19, 12571272.CrossRefGoogle Scholar
Fisher, F.M. (1966), The Identification Problem in Econometrics. McGraw-Hill.Google Scholar
Giné, E. & Nickl, R. (2008) A simple adaptive estimator of the integrated square of a density. Bernoulli 14, 4761.CrossRefGoogle Scholar
Goh, C. (2017) Rate-Optimal Estimation of the Intercept in a Semiparametric Sample-Selection Model. Working paper, arXiv:1710.01423.Google Scholar
Hahn, J. (1994) The efficiency bound of the mixed proportional hazard model. Review of Economic Studies 61, 607629.CrossRefGoogle Scholar
Hall, P. & Marron, J.S. (1987) Estimation of integrated squared density derivatives. Statistics and Probability Letters 6, 109–15.CrossRefGoogle Scholar
Hansen, L.P. & Scheinkman, J.A. (2009) Long-term risk: An operator approach. Econometrica 77, 177234.Google Scholar
Hasminskii, R.Z. & Ibragimov, I.A. (1978) On the nonparametric estimation of functionals. In Proceedings of the 2nd Prague Symposium on Asymptotic Statistics, pp. 41–51. North-Holland.Google Scholar
Heckman, J.J. (1990) Varieties of selection bias. The American Economic Review 80, 313318.Google Scholar
Heckman, J.J. & Singer, B. (1984a) The identifiability of the proportional hazard model. Review of Economic Studies 51, 231241.CrossRefGoogle Scholar
Heckman, J.J. & Singer, B. (1984b) A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica 52, 271320.CrossRefGoogle Scholar
Hu, Y. & Schennach, S.M. (2008) Instrumental variable treatment of nonclassical measurement error models. Econometrica 76(1), 195216.CrossRefGoogle Scholar
Hu, Y. & Shum, M. (2012) Nonparametric identification of dynamic models with unobserved state variables. Journal of Econometrics 171, 3244.CrossRefGoogle Scholar
Hurwicz, L. (1950) Generalization of the concept of identification. In Koopmans, T.C. (ed.), Statistical Inference in Dynamic Economic Models. Wiley.Google Scholar
Ishwaran, H. (1996) Identifiability and rates of estimation for scale parameters in location mixture models. Annals of Statistics 24, 15601571.CrossRefGoogle Scholar
Ishwaran, H. (1999) Information in semiparametric mixtures of exponential families. Annals of Statistics 27, 159177.CrossRefGoogle Scholar
Khan, S. & Nekipelov, D. (2018) Information structure and statistical information in discrete response models, Quantitative Economics, 9(2), 9951017.CrossRefGoogle Scholar
Khan, S. & Tamer, E. (2010) Irregular identification, support conditions, and inverse weight estimation. Econometrica 6, 20212042.Google Scholar
Koopmans, T.C. (1949) Identification problems in economic model construction. Econometrica 17, 125144.CrossRefGoogle Scholar
Koopmans, T.C. & Reirsol, O. (1950) The identification of structural characteristics. Annals of Mathematical Statistics 21, 165181.CrossRefGoogle Scholar
Koševnik, Y.A. & Levit, B.Y. (1976) On a non-parametric analogue of the information matrix. Theory of Probability and Its Applications 21, 738753.CrossRefGoogle Scholar
Kress, R. (1999) Linear Integral Equations. Springer.CrossRefGoogle Scholar
LeCam, L. (1973) Convergence of estimates under dimensionality restrictions. Annals of Statistics 1, 3853.CrossRefGoogle Scholar
Lewbel, A. (1997) Semiparametric estimation of location and other discrete choice moments. Econometric Theory 13, 3251.CrossRefGoogle Scholar
Lewbel, A. (2019) The identification zoo—Meanings of identification in econometrics. Journal of Economic Literature 57(4), 835903.CrossRefGoogle Scholar
Lewbel, A., Linton, O.B.B., & McFadden, D. (2011) Estimating features of a distribution from binomial data. Journal of Econometrics 162, 170188.CrossRefGoogle Scholar
Luenberger, D.G. (1997) Optimization by Vector Space Methods, 1969 Edition. Wiley.Google Scholar
MaCurdy, T.E. (1981) An empirical model of labor supply in a life-cycle setting. Journal of Political Economy 89, 10591085 CrossRefGoogle Scholar
Manski, C. (1975) Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics 3, 205228.CrossRefGoogle Scholar
Matzkin, R.L. (2007) Nonparametric identification. In Heckman, J.J. & Leamer, E.E. (eds.), Handbook of Econometrics, vol. 6b, pp. 53075368. Elsevier.CrossRefGoogle Scholar
Matzkin, R.L. (2013) Nonparametric identification in structural economic models. Annual Review of Economics 5.CrossRefGoogle Scholar
Newey, W.K. (1990) Semiparametric efficiency bounds. Journal of Applied Econometrics 5, 99135.CrossRefGoogle Scholar
Newey, W.K. (1997) Convergence rates and asymptotic normality for series estimators. Journal of Econometrics 79, 147168.CrossRefGoogle Scholar
Pfanzagl, J. (1982) Contributions to a General Asymptotic Statistical Theory. Lecture Notes in Statistics, vol. 13. Springer-Verlag.CrossRefGoogle Scholar
Polyanin, A.D. & Manzhirov, A.V. (2008) Handbook of Integral Equations, 2nd Edition. Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Pötscher, B.M. (2002) Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica 70, 10351065.CrossRefGoogle Scholar
Prakasa Rao, B.L.S. (1983) Nonparametric Functional Estimation. Academic Press.Google Scholar
Ridder, G. & Woutersen, T. (2003) The singularity of the efficiency bound of the mixed proportional hazard model. Econometrica 71, 15791589.CrossRefGoogle Scholar
Ritov, Y. & Bickel, P.J. (1990) Achieving information bounds in non and semiparametric models. Annals of Statistics 18, 925938.CrossRefGoogle Scholar
Rothenberg, R.J. (1971) Identification in parametric models. Econometrica 39(3), 577591.CrossRefGoogle Scholar
Rudin, W. (1973) Functional Analysis. McGraw-Hill.Google Scholar
Runkle, D.E. (1991) Liquidity constraints and the permanent income hypothesis. Journal of Monetary Economics 27, 7398.CrossRefGoogle Scholar
Samwick, A.A. (2006) Saving for retirement: Understanding the importance of heterogeneity. Business Economics 41, 2127.CrossRefGoogle Scholar
Santos, A. (2011) Instrumental variables methods for recovering continuous linear functionals. Journal of Econometrics 161, 129146.CrossRefGoogle Scholar
Sargan, J.D. (1958) The estimation of economic relationships using instrumental variables. Econometrica 26, 393415.CrossRefGoogle Scholar
Sargan, J.D. (1983) Identification and lack of identification. Econometrica 51, 16051633.CrossRefGoogle Scholar
Schweder, T. (1975) Window estimation of the asymptotic variance of rank estimators of location. Scandinavian Journal of Statistics 2, 113126.Google Scholar
Severini, T.A. & Tripathi, G. (2006) Some identification issues in nonparametric linear models with endogenous regressors. Econometric Theory 22(2), 258278.CrossRefGoogle Scholar
Severini, T.A. & Tripathi, G. (2012) Efficiency bounds for estimating linear functionals of nonparametric regression models with endogenous regressors. Journal of Econometrics 170(2), 491498.CrossRefGoogle Scholar
Shapiro, M.D. (1984) The permanent income hypothesis and the real interest rate. Economics Letters 14, 93100.CrossRefGoogle Scholar
Stein, C. (1956) Efficient nonparametric testing and estimation. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press.CrossRefGoogle Scholar
van der Vaart, A.W. (1991) On differentiable functionals. Annals of Statistics 19, 178204.Google Scholar
van der Vaart, A.W. (1998) Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3. Cambridge University Press.CrossRefGoogle Scholar
Venti, S.F. & Wise, D.A. (1998) The cause of wealth dispersion at retirement: Choice or chance? American Economic Review 88, 185191.Google Scholar
Supplementary material: PDF

Escanciano supplementary material

Escanciano supplementary material 1

Download Escanciano supplementary material(PDF)
PDF 141.3 KB
Supplementary material: File

Escanciano supplementary material

Escanciano supplementary material 2

Download Escanciano supplementary material(File)
File 22.4 KB