No CrossRef data available.
Article contents
Perturbation Bound for the Eigenvalues of a Singular Diagonalizable Matrix
Published online by Cambridge University Press: 28 May 2015
Abstract
In this short note, we present a sharp upper bound for the perturbation of eigenvalues of a singular diagonalizable matrix given by Stanley C. Eisenstat [3].
- Type
- Research Article
- Information
- Copyright
- Copyright © Global-Science Press 2014
References
[1]Ben-Israel, A. and Greville, T.N.E., Generalized Inverses: Theoryand Applications, Wiley, New York, 1974; 2nd Edition, Springer, New York, 2003.Google Scholar
[2]Bauer, F. and Fike, C., Norms and exclusion theorems, Numer. Math. 2, 137–141 (1960).Google Scholar
[3]Eisenstat, S.C., A perturbation bound for the eigenvalues of a singular diagonalizable matrix, Linear Algebra Appl. 416, 742–744 (2006).Google Scholar
[4]Eisenstat, S.C. and Ipsen, I.C.F., Three absolute perturbation bounds for matrix eigenvalues imply relative bounds, SIAM J. Matrix Anal. Appl. 20, 149–158 (1999).CrossRefGoogle Scholar
[5]Jin, X. and Wei, Y., Numerical Linear Algebra and Its Applications, Science Press, Beijing, 2004; 4th printing, Science Press and Alpha Science International Ltd., Oxford, UK, 2012.Google Scholar
[6]Shi, X. and Wei, Y., A sharp version of Bauer-Fike's theorem, J. Comput. Appl. Math. 236, 3218–3227 (2012).CrossRefGoogle Scholar
[7]Wei, Y., Li, X., Bu, F., and Zhang, F., Relative perturbation bounds for the eigenvalues of singular matrices, 2005. Available from: http://www.math.umn.edu/~buxxx001/publications/R_perturbation.pdf.Google Scholar
[8]Wei, Y., Li, X., Bu, F., and Zhang, F., Relative perturbation bounds for the eigenvalues of diagonal-izable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl. 419, 765–771 (2006).Google Scholar
[9]Wei, Y., Generalized inverses of matrices, Chapter 27 in Handbook of Linear Algebra, 2nd Edition, Hogben, L. (Ed.), Chapman and Hall/CRC, 2014.Google Scholar