Published online by Cambridge University Press: 28 May 2015
To understand a genetic regulatory network, two popular mathematical models, Boolean Networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been proposed. Here we address the problem of constructing a sparse Probabilistic Boolean Network (PBN) from a prescribed positive stationary distribution. A sparse matrix is more preferable, as it is easier to study and identify the major components and extract the crucial information hidden in a biological network. The captured network construction problem is both ill-posed and computationally challenging. We present a novel method to construct a sparse transition probability matrix from a given stationary distribution. A series of sparse transition probability matrices can be determined once the stationary distribution is given. By controlling the number of nonzero entries in each column of the transition probability matrix, a desirable sparse transition probability matrix in the sense of maximum entropy can be uniquely constructed as a linear combination of the selected sparse transition probability matrices (a set of sparse irreducible matrices). Numerical examples are given to demonstrate both the efficiency and effectiveness of the proposed method.