Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T14:21:50.318Z Has data issue: false hasContentIssue false

Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models

Published online by Cambridge University Press:  02 May 2017

Xiao-Ting Gan*
Affiliation:
School of Mathematical Science, Tongji University, Shanghai 200092, PR China School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong 675000, Yunnan Province, PR China
Jun-Feng Yin*
Affiliation:
School of Mathematical Science, Tongji University, Shanghai 200092, PR China
Yun-Xiang Guo*
Affiliation:
School of Mathematical Science, Tongji University, Shanghai 200092, PR China
*
*Corresponding author. Email addresses:[email protected] (X.-T. Gan), [email protected] (J.-F. Yin), [email protected] (Y.-X. Guo)
*Corresponding author. Email addresses:[email protected] (X.-T. Gan), [email protected] (J.-F. Yin), [email protected] (Y.-X. Guo)
*Corresponding author. Email addresses:[email protected] (X.-T. Gan), [email protected] (J.-F. Yin), [email protected] (Y.-X. Guo)
Get access

Abstract

A class of finite volume methods is developed for pricing either European or American options under jump-diffusion models based on a linear finite element space. An easy to implement linear interpolation technique is derived to evaluate the integral term involved, and numerical analyses show that the full discrete system matrices are M-matrices. For European option pricing, the resulting dense linear systems are solved by the generalised minimal residual (GMRES) method; while for American options the resulting linear complementarity problems (LCP) are solved using the modulus-based successive overrelaxation (MSOR) method, where the H+-matrix property of the system matrix guarantees convergence. Numerical results are presented to demonstrate the accuracy, efficiency and robustness of these methods.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Amin, K., Jump diffusion option valuation in discrete time, J. Financial 48, 18631883 (1993).Google Scholar
[2] Andersen, L. and Andreasen, J., Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Deriv. Res. 4, 231262 (2000).Google Scholar
[3] Borici, A. and Luthi, H.J., Fast solution of complementarity formulations in American put option pricing, J. Comp. Fin. 9, 6381 (2005).Google Scholar
[4] Bai, Z.Z., Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear. Algebra. Appl. 17, 917933 (2010).Google Scholar
[5] Black, F. and Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ. 81, 637654 (1973).Google Scholar
[6] Cryer, C. W., The solution of a quadratic programming using systematic overrelaxation, SIAM J. Control 9, 385392 (1971).Google Scholar
[7] Forsyth, P.A. and Vetzal, K.R., Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput. 23, 20952122 (2002).Google Scholar
[8] Li, R.H., Chen, Z.Y. and Wu, W., Generalized Difference Methods for Differential Equations (Numerical Analysis of Finite Volume Methods), Marcel Dekker, NewYork (2000).Google Scholar
[9] Li, Y., Lin, J. and Yang, M., Finite volume element methods: An overview on recent developments, Int. J. Numer. Anal. Model, Series B 4, 1434 (2013).Google Scholar
[10] d’Halluin, Y., Forsyth, P.A. and Labahn, G.A, A penalty method for American options with jump diffusion processes, Numer. Math. 97, 321352 (2004).Google Scholar
[11] d’Halluin, Y., Forsyth, P.A. and Vetzal, K.R., Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal. 25, 87112 (2005).Google Scholar
[12] Salmi, S. and Toivanen, J., An iterative method for pricing American options under jump-diffusion model, Appl. Numer. Math. 61, 821831 (2011).Google Scholar
[13] Toivanen, J., Numerical valuation of European and American options under Kou's jump-diffusion model, SIAM J. Sci. Comput. 30, 19491970 (2008).Google Scholar
[14] Toivanen, J., A high-order front-tracking finite difference method for pricing American options under jump-diffusion models, J. Comp. Fin. 13, 6179 (2010).Google Scholar
[15] Zhang, X.L., Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res. 22, 668690 (1997).Google Scholar
[16] Zhang, K. and Wang, S., A computational scheme for options under jump diffusion processes, Int. J. Numer. Anal. Mod. 6, 110123 (2009).Google Scholar
[17] Zhang, K. and Wang, S., Pricing options under jump diffusion processes with fitted finite volume method, Appl. Math. Comput. 201, 398413 (2008).Google Scholar
[18] Zheng, N. and Yin, J.F., Modulus-based successive overrelaxation method for pricing American options, J. Appl. Math. Informatics 31, 769784 (2013).CrossRefGoogle Scholar
[19] Zhang, K., Yang, X.Q. and Teo, K.L., Augmented Lagrangian method applied to American option pricing, Automatica 42, 14071416 (2006).Google Scholar
[20] Zhang, K., Wang, S., Yang, X.Q. and Teo, K.L., A power penalty approach to numerical solutions of two-asset American options, Numer. Math: Theory, Methods and Applications 2, 202223 (2009).Google Scholar