Published online by Cambridge University Press: 02 May 2017
Admissible regions for higher-order finite volume method (FVM) grids are considered. A new Hermite quintic FVM and a new hybrid quintic FVM are constructed to solve elliptic boundary value problems, and the corresponding admissible regions are investigated. A sufficient condition for the uniform local-ellipticity of the new hybrid quintic FVM is obtained when its admissible region is known. In addition, the admissible regions for a large number of higher-order FVMs are provided. For the same class of FVM (Lagrange, Hermite or hybrid), the higher order FVM has a smaller admissible region such that stronger geometric restrictions are required to guarantee its uniform local-ellipticity.