Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:57:16.767Z Has data issue: false hasContentIssue false

Sinc Nyström Method for Singularly Perturbed Love's Integral Equation

Published online by Cambridge University Press:  28 May 2015

Fu-Rong Lin*
Affiliation:
Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China
Xin Lu
Affiliation:
Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China
Xiao-Qing Jin*
Affiliation:
Department of Mathematics, University of Macau, Macao, China
*
Corresponding author. Email: [email protected]
Corresponding author. Email: [email protected]
Get access

Abstract

An efficient numerical method is proposed for the solution of Love's integral equation

where c > 0 is a small parameter, by using a sinc Nyström method based on a double exponential transformation. The method is derived using the property that the solution ƒ(x) of Love's integral equation satisfies ƒ (x) → 0.5 for x ∈ (−1, 1) when the parameter c → 0. Numerical results show that the proposed method is very efficient.

Type
Research Article
Copyright
Copyright © Global-Science Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Agida, M. and Kumar, A. S., A Boubaker polynomials expansion scheme solution to random Love's equation in the case of a rational kernel, Electr. J. Theor. Phys., 7 (24) (2010), pp. 319326.Google Scholar
[2]El-Gendi, S. E., Chebyshev solution of differential, integral and integro-differential equations, Comput. J., 12 (1969-1970), pp. 282287.CrossRefGoogle Scholar
[3]Elliott, D., A Chebyshev series method for the numerical solution of Fredholm integral equations, Comput. J., 6 (1963-1964), pp. 102111.Google Scholar
[4]Fox, L. and Goodwin, E. T., The numerical solution of non-singular linear integral equations, Phil. Trans. R. Soc. Lond. A, 245 (1953), pp. 501534.Google Scholar
[5]Love, E. R., The electrostatic field of two equal circular co-axial conducting disks, Quart. J. Mech. Appl. Math., 2 (1949), pp. 428451.CrossRefGoogle Scholar
[6]Monegato, G. and Orsi, A. P., Product formulas for Fredholm integral equations with rational kernel functions, in: Numerical Integration, III Oberwolfach, 1987, in: Internat. Schriftenreihe Numer. Math., vol. 85, Birkhäuser, Basel, 1988, pp. 140156.Google Scholar
[7]Mori, M., Nurmuhammad, A., and Murai, T., Numerical solution of Volterra integral equations with weakly singular kernel based on the DE-sinc method, Japan J. Indust. Appl. Math., 25 (2008), pp. 165183.CrossRefGoogle Scholar
[8]Mori, M. and Sugihara, M., The double exponential transformation in numerical analysis, J. Comput. Appl. Math., 127 (2001), pp. 287296.Google Scholar
[9]Tanaka, K., Sugihara, M., Murota, K., and Mori, M., Function classes for double exponential integration formulas, Numer. Math., 111 (2009), pp. 631655.CrossRefGoogle Scholar
[10]Pastore, P., The numerical treatment of Love's integral equation having very small parameter, J. Comput. Appl. Math., 236 (2011), pp. 12671281.CrossRefGoogle Scholar
[11]Phillips, J. L., The use of collocation as aprojection method for solving linear operator equations, SIAM J. Numer. Anal., 9 (1972), pp. 1428.CrossRefGoogle Scholar
[12]Sastry, S. S., Numerical solution of non-singular Fredholm integral equations of the second kind, Indian J. Pure Appl. Math., 6 (1975), pp. 773783.Google Scholar
[13]Stenger, F., Summary of sinc numerical methods, J. Comput. Appl. Math., 121 (2000), pp. 379420.Google Scholar
[14]Sugihara, M., Optimality of the double exponential formula-functional analysis approach, Numer. Math., 75 (1997), pp. 379395.CrossRefGoogle Scholar
[15]Sugihara, M. and Matsuo, T., Recent developments of the sinc numerical methods, J. Comput. Appl. Math., 164-165 (2004), pp. 673689.Google Scholar
[16]Takahasi, H. and Mori, M., Double exponential formulas for numerical integration, Publ. Res. Inst. Math. Sci., 9 (1974), pp. 721741.Google Scholar
[17]Wolfe, M. A., The numerical solution of non-singular integral and integrodifferential equations by iteration with Chebyshev series, Comput. J., 12 (1969-1970), pp. 193196.Google Scholar
[18]Young, A., The application of approximate product integration to the numerical solution of integral equations, Proc. R. Soc. Lond. A, 224 (1954), pp. 561573.Google Scholar