Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-13T08:49:08.988Z Has data issue: false hasContentIssue false

U—Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution

Published online by Cambridge University Press:  03 November 2011

Ulrike Poller
Affiliation:
Max-Plank-Institut für Chemie, Abt. Geochemie, Postfach 3060, D-55020 Mainz,Germany e-mail: poller@mpch-mainz,.mpg.de
Wolfgang Todt
Affiliation:
Max-Plank-Institut für Chemie, Abt. Geochemie, Postfach 3060, D-55020 Mainz, Germany

Abstract

New U/Pb results by cathodoluminescence-controlled single zircon dating of rocks from the High Tatra Mountains (Slovakia) constrain ages for the protolith at 2Ga for the granitoids and 3 Ga for the Koncistá migmatite. Concordant single zircon ages date the intrusion of the migmatite precursor at 3567 Ma and the migmatisation at 332 ± 5 Ma. The intrusion of this precursor corresponds with the major granite intrusion in the Western Tatra Mountains. The geodynamic scenario at this time is described as slab detachment of subducted oceanic crust at the active continental margin of Gondwana. The resulting upwelling of asthenospheric mantle brought enough heat for the anatexis of old metasediments and the production of new H- to S-type granites. High Tatra diorites have an intrusion age of 341 ± 5 Ma, constrained by a concordant single zircon age. This age marks the beginning of the Variscan collision of the two convergent continents Laurasia and Gondwana. The intrusion of granites in the High Tatra was confirmed by concordant data at 314 ± 4 Ma, documenting the final stage of the Variscan continent collision.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bezák, V., Jacko, S., Janák, M., Ledru, P., Petrík, I.&Vozárová, A. 1997. Main Hercynian lithotcctonic units of the Western Carpathians. In Grecula, P., Hovorka, D.&Putis, M. (eds) Geological evolution of the Western Carpathians, 261–8. Bratislava: Mineralia Slovaca — Monograph.Google Scholar
von, Blanckenburg F.&Davies, J.H. 1995. Slab break off: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–31.Google Scholar
Burchart, J. 1968. Rubidium-strontium isochron ages of the crystalline core of the Tatra mountains, Poland. American Journal of Science 266, 895907.Google Scholar
Castro, A., Moreno-Ventas, I.&de la Rosa, J. D. 1992. H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Science Reviews 31, 237–53.Google Scholar
Chappell, B.W.& White, A.J.R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Franke, W., Zelázniewicz, A., Porebski, S.&Wajsprych, B. 1993. Saxothuringian zone in Germany and Poland: differences and common features. Geologische Rundschau 82, 583–99.Google Scholar
Fritz, H., Neubauer, F., Janák, M.&Putis, M. 1992. Variscan midcrustal thrusting in the Carpathians II: Kinematics and fabric evolution of the Western Tatra basement. Terra Abstracts, Supplement 2 to Terra Nova 4, 24.Google Scholar
Gaweda, A. 1995. Geochemistry and Rb/Sr isochron age of pegmatites from the Western Tatra Mountains. Geologica Carpathica 46/2, 95–9.Google Scholar
Harris, N. B. W., Pearce, J. A.&Tindle, A. G. 1986. Geochemical characteristics of collision-zone magmatism. In Coward, M. P.&Ries, A.C. (eds) Collisional Tectonics, Geological Society Special Publication 19, 6781.Google Scholar
Hovorka, D., Méres, S.&Ivan, P. 1994. Pre-Alpine Western Carpathians basement complexes: lithology and geodynamic setting. Mitteilungen Österreichischen Geologischen Gesellschaft 86, 3344.Google Scholar
Hrouda, F.&Kahan, S. 1991. The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia. Journal of Structural Geology 13, 431–42.Google Scholar
Janák, M. 1994. Variscan uplift of the crystalline basement, Tatra Mountains, Central Western Carpathians: evidence from 40Ar/39Ar laser probe dating of biotite and P-T-t paths. Geologica Carpathica 45, 293300.Google Scholar
Janák, M., ÓBrien, P. J., Hurai, V.&Reutel, C. 1996. Metamorphic evolution and fluid composition of garnet-clinopyroxene amphibolites from the Tatra Mountains, Western Carpathians. Lithos 39, 5779.Google Scholar
Janák, M., Hurai, V., Ludhová, L., O'Brien, P. J.& Horn, E. 1999. Dehydration melting and devolatilization during exhumation of high-grade metapelites: the Tatra Mountains, Western Carpathians. Journal of Metamorphic Geology 17, 379–95.Google Scholar
Janák, M.& Onstott, T. C. 1993. Pre-Alpine tectono-thermal evolution of metamorphism in the Tatra Mountains, Western Carpathians: P-T paths and 40Ar/39Ar laser probe dating. Terra Abstracts, Supplement 1 to Terra Nova 5, 238.Google Scholar
Kahan, S. 1969. Eine ncuc Ansicht über den geologischen Aufbau des Kristallinikums der West Tatra. Acta Geologica et Geographica Universitatis Comenianae 12, 115–22.Google Scholar
Kohút, M.& Janák, M. 1994. Granitoids of the Tatra Mountains, Western Carpathians: field relationships and petrogenetic implications. Geologica Carpathica 45, 301–11.Google Scholar
Kovác, M., Král, J., Márton, E., Plasienka, D.& Uher, P. 1994. Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica 45, 8396.Google Scholar
Krist, E., Korikovsky, S. P., Putis, M., Janák, M.& Faryad, S. W. 1992. Geology and Petrology of metamorphic rocks of the Western Carpathian Crystalline Complexes. Bratislava: Comenius University Press.Google Scholar
Loveridge, W. D. 1986. Measurement of biases in the electron multiplier ion detection system of a Finnigan MAT Model 261 mass spectrometer. International Journal of Mass Spectrometry 74, 197206.Google Scholar
Ludwig, K. 1992. ISOPLOT a plotting and regression program for radiogenic isotope data, version 2.57. U.S. Geological Survey Open File Report 91–445.Google Scholar
Maluski, H., Rajlich, P.& Matte, P. 1993. 40Ar—39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprint. Tectonophysics 223, 313–37.Google Scholar
Matte, Ph. 1998. Continental subduction and exhumation of HP rocks in Paleozoic orogenic belts: Uralides and Variscides. Geologiska Foereningens i Stockholm foerhandlingar 120, 209–22.Google Scholar
Neubauer, F., Hoinkes, G., Sassi, F. P., Handler, R., Höck, V., Koller, F.& Frank, W. 1999. Pre-Alpine metamorphism of the Eastern Alps. Schweizerisch Mineralogisehe-Petrographische Mitteilungen 79/1, 4162.Google Scholar
Neubauer, F.& v. Raumer, J. F. 1993. The alpine basement linkage between Variscides and East-Mediterranean mountain belts. In v. Raumer, J. F.& Neubauer, F. (eds) The pre-Mesozoic geology of the Alps, 641–63. Berlin: Springer.Google Scholar
Pearce, J. A., Harris, N. B. W.& Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Poller, U., Liebetrau, V.& Todt, W. 1997. U—Pb single-zircon dating under cathodo-luminescence control (CLC-method): application to polymetamorphic orthogneisses. Chemical Geology 139, 287–97.Google Scholar
Poller, U., Todt, W., Janák, M.& Kohút, M. 1999. The relationship between the Variscides and the Western Carpathians basement: New Sr, Nd and Pb-Pb isotope data from the Tatra Mountains. Geologica Carpathica 50, 131–3.Google Scholar
Poller, U., Janák, M., Kohút, M.& Todt, W. Early Variscan Magmatism in the Western Carpathians: U—Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Geologische Rundschau (in press).Google Scholar
Putis, M. 1992. Variscan and Alpidic nappe structure of the Western Carpathians crystalline basement. Geologica Carpathica 43, 369–80.Google Scholar
Reischmann, T.& Anthes, G. 1996. Geochronology of the mid-German crystalline rise west of the River Rhine. Geologische Rundschau 85, 761–74.Google Scholar
Schätz, M., Bachtadse, V., Tait, J. A.& Soffel, H. C. 1997. Palacomagnetic results from Lower Devonian sediments of the southern Alps. Terra Nostra 5, 152–5.Google Scholar
Stampfli, G. 1996. The intra-Alpine terrain: a Palaeotethyan remnant in the Alpine Variscides. Eclogae Helvetica 89, 1242.Google Scholar
Tait, J., Schätz, M., Bachtadse, V.& Soffel, H. 1998. Paleogeography of Paleozoic terranes in the Variscan and Alpine fold belts. Schriften Staatliches Museum Mineralogie und Geologic, Dresden 9, 192–3.Google Scholar
Todt, W., Cliff, R. A., Hanser, A.& Hofmann, A. W. 1996. Evaluation of a 202Pb—205Pb double spike for high-precision lead isotope analysis. Geophysical Monograph 95, 429–37.Google Scholar
Wendt, J. I.& Todt, W. 1991. A vapour digestion method for dating single zircons by direct measurements of U and Pb without chemical separation. Terra Abstracts 3, 507508.Google Scholar
White, W. M. 1998. Geochemistry. An On-line Textbook. Cornell University. http://www.geo.cornell.edu/geology/classes/Chapters.html Google Scholar