Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T23:26:55.859Z Has data issue: false hasContentIssue false

Trilobite palaeobiology and substrate relationships

Published online by Cambridge University Press:  03 November 2011

A. Seilacher
Affiliation:
Institut und Museum für Geologie und Paläontologie, Universität Tübingen, 7400 Tübingen 1, Sigwartstrasse 10, B.R.D.

Abstract

A model suggesting that the trilobite carapace served primarily as a tight hood, under which sandy sediment could be processed for food, is consistent with morphological and ichnological data. It helps us to understand not only the origin of trilobite design, but also its modification for other habitats and modes of life.

Type
Life and environment of fossil forms
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G. & Durand, F. R. 1984. The trace fossil Oldhamia. Its interpretation and occurrence in the Lower Cambrian of Argentina. NEUES JAHRB GEOL PALAONTOL MONATSH 1984 (12), 728–40.Google Scholar
Baldwin, C. T. 1977. Internal structures of trilobite trace fossils indicative of an open surface furrow origin. PALEOGEOGR PALEOCLIMAT PALEOECOL 21, 273–84.CrossRefGoogle Scholar
Bergström, J. 1969. Remarks on the appendages of trilobites. LETHAIA 2, 395414.CrossRefGoogle Scholar
Bergström, J. 1973. Organization, life and systeraatics of trilobites. FOSSILS STRATA 2, 169.CrossRefGoogle Scholar
Bergström, J. 1976. Lower Paleozoic trace fossils from eastern Newfoundland. CAN J EARTH SCI 13, 1613–33.CrossRefGoogle Scholar
Birkenmajer, K. and Bruton, D. 1971. Some trilobite resting and crawling traces. LETHAIA 4, 303–19.CrossRefGoogle Scholar
Bromley, R. G. & Asgaard, U. 1972. Notes on Greenland trace fossils. REP GEOL SURV GREENLAND 49.Google Scholar
Caster, K. E. 1938. A restudy of Paramphibus. J PALEONTOL 12, 360.Google Scholar
Crimes, T. P. 1970. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. GEOL J 7, 4768.CrossRefGoogle Scholar
Crimes, T. P. 1975. The production and preservation of trilobite resting and furrowing traces. LETHAIA 8, 3548.CrossRefGoogle Scholar
Dawson, J. W. 1864. On the fossils of the Genus Rusophycus. CAN NAT 1, 363458.Google Scholar
Fedonkin, M. A. 1985. Precambrian metazoans: the problems of presentation, systematics and evolution. PHIL TRANS R SOC LOND B 311, 2745.Google Scholar
Fortey, R. A. 1985. Deducing the life habits of trilobites. TRANS R SOC EDINBURGH EARTH SCI 76, 219–30.Google Scholar
Ghiold, J. & Seilacher, A. 1982. Burrowing and feeding in sand dollars as reflected in the functional differentiation of external structures. NEUES JAHRB GEOL PALAONTOL ABH 164, 221–8.CrossRefGoogle Scholar
Goldring, R. 1985. The formation of the trace fossil Cruziana. GEOL MAG 122 (1), 6572.CrossRefGoogle Scholar
Goldring, R. & Seilacher, A. 1971. Limulid undertracks and their sedimentological implications. NEUES JAHRB GEOL PALAONTOL ABH 137 (3), 422–42.Google Scholar
Hall, J. 1852. Paleontology of New York, Vol. 2. Albany.Google Scholar
Hammann, W. 1985. Life habit and enrolment in Calymenacea (Trilobita) and their significance for classification. TRANS R SOC EDINBURGH EARTH SCI 76, 307–18.Google Scholar
Hantzschel, W. 1962. Trace Fossils and Problematica. In Treatise on Invertebrate Paleontology, Part W. Lawrence, Kansas: Geol. Soc. Am. & Univ. of Kansas Press.Google Scholar
Jefferies, R. P. S., Savazzi, E., Schmalfuss, H. & Seilacher, A. 1981. Grabskulpturen. PALAONTOL KURSB 1, 111–40.Google Scholar
Lessertisseur, J. 1956. Sur un bilobite nouveau du Gothlandien de L'Ennedi (Tchad, A.E.F.), Cruziana ancora. BULL SOC GEOL FR (6) 6, 43.CrossRefGoogle Scholar
Meinhardt, H. 1982. Models of Biological Pattern Formation. London: Academic Press.Google Scholar
Miller, J. 1975. Structure and function of trilobite terrace lines. FOSSILS STRATA 4, 155–78.CrossRefGoogle Scholar
Nathorst, A. G. 1883. Quelques remarques concernant les algues fossiles. BULL SOC GEOL FR 11, (3), 452–5.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati Area. PALEONTOGR AM (vol. VI) 41, 281439.Google Scholar
Osgood, R. G. & Drennen, W. I. 1975. Trilobite trace fossils from the Clinton group (Silurian) of east-central New York State. BULL AM PALEONTOL 67, No. 287, 299349.Google Scholar
Otto, F. 1976. Pneus in Nature and Technics. INFORM INST LIGHT WEIGHT STRUCT (IL 9), Univ. Stuttgart.Google Scholar
Owen, A. W. 1985. Trilobite abnormalities. TRANS R SOC EDINBURGH EARTH SCI 76, 255272.Google Scholar
Pollard, J. E. 1985. Isopodichnus, related arthropod trace fossils and notostracans from Triassic fluvial sediments. TRANS R SOC EDINBURGH EARTH SCI 76, 273285.Google Scholar
Reif, W.-E. & Dinkelacker, A. 1982. Hydrodynamics of the squamation in swimming sharks. NEUES JAHRB GEOL PALAONTOL ABH 164, 3305.CrossRefGoogle Scholar
Savazzi, E. 1981. Functional morphology of the cuticular terraces in Ranina (Lophoranina) brachyuran decapods; Eocene of NE Italy. NEUES JAHRB GEOL PALAONTOL ABH 162, 231–43.Google Scholar
Savazzi, E. 1862a. Shell sculpture and burrowing in the bivalves Scapharca inaequivalvis and Acanthocardia tuberculata. STUTTGARTER BEITR NATURKD SER A 353.Google Scholar
Savazzi, E. 1982b. Burrowing habits and cuticular sculptures in Recent sand-dwelling brachyuran decapods from the Northern Adriatic Sea (Mediterranean). NEUES JAHRB GEOL PALAONTOL ABH 163, 369–88.Google Scholar
Savazzi, E. 1985. Functional morphology of the cuticular terraces in burrowing terrestrial brachyuran decapods. LETHAIA 18, 147–54.CrossRefGoogle Scholar
Schmalfuss, H. 1978. Structure, patterns and functions of cuticular terraces in Recent and fossil arthropods. I. Decapod crustaceans. ZOOMORPHOL 90, 1940.CrossRefGoogle Scholar
Schmalfuss, H. 1981. Structure, patterns and function of cuticular terraces in trilobites. LETHAIA 14, 331–41.CrossRefGoogle Scholar
Seilacher, A. 1955. Spuren und Lebensweise der Trilobiten. In Schindewolf, & Seilacher, A. (eds) Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan). AKAD WISS LIT MAINZ ABH MATH-NATURWISS KL 10, 86116.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones. In Crimes, T. P. and Harper, J. C. (eds). Trace fossils. GEOL J SPEC ISSUE 3, 447–76.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. SYST ZOOL 22, 451–65.CrossRefGoogle Scholar
Seilacher, A. 1983. Paleozoic sandstones in Southern Jordan; Trace fossils, depositional environments and biogeography. In Abed, A. M. & Khaled, H. M. (eds) Geology of Jordan, 209–22. (Proc. 1st Jordanian Geol. Conference Jord. Geologists Assoc.)Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. PALAEONTOLOGY 27, 207–37.Google Scholar
Shone, R. W. 1979. Giant Cruziana from the Beaufort group. TRANS GEOL SOC S AFR 81 (3), 327–9.Google Scholar
Stanley, S. M. 1969. Bivalve mollusc burrowing aided by discordant shell ornamentation. SCIENCE 166, 634–5.CrossRefGoogle Scholar
Stitt, J. H. 1976. Functional morphology and life habits of the Late Cambrian trilobite Stenopilus pronus Raymond. J PALEONTOL 50, 561–76.Google Scholar
Whittington, H. B. 1982. Exoskeleton, moult stage, appendage with habits of the middle Cambrian trilobite Olenoides serratus. PALAEONTOLOGY 23, 171204.Google Scholar