Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T05:49:16.041Z Has data issue: false hasContentIssue false

‘This strange little palaeoniscid': a new early actinopterygian genus, and commentary on pectoral fin conditions and function

Published online by Cambridge University Press:  07 November 2018

Abstract

The early actinopterygian Mesopoma planti is reassigned to a new genus on the basis of data obtained from high-resolution computed tomography (CT) scans of an unusually well-preserved specimen from the Early Pennsylvanian of Lancashire, UK. The former M. planti is joined by two further Mesopoma species from the Late Mississippian of Scotland. CT scans of the key planti specimen bring to light new details of the dermal skull, pectoral girdle and fin. Among the cranial features, CT data reveal a specialised, anteriorly projecting preopercular bone, the location of the spiracular duct opening, presence of a so-called coronoid process on the lower jaw and the full three-dimensional shape of the snout. Of the pectoral girdle and fin, for the first time in a Palaeozoic actinopterygian it has been possible to complete a three-dimensional reconstruction of the entire endoskeleton in articulation. The fin presents new diversity within a conservative general pattern, revealing for the first time a double propterygium. Girdle shape shows that the fin orientation is derived: rotated with the leading edge dorsalmost. These details are used to identify unexploited character states for use in phylogenetic analyses, while functional implications of the fin and girdle suggest advanced locomotory control emerging among different groups of post-Devonian ray-finned fishes.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Alben, S., Madden, P. G. & Lauder, G. V. 2007. The mechanics of active fin-shape control in ray-finned fishes. Journal of the Royal Society Interface 4, 243256.Google Scholar
Andrews, S. M., Long, J. A., Ahlberg, P. E., Barwick, R. E. & Campbell, K. S. W. 2006. The structure of the sarcopterygian Onychodus jandemarri n. sp. from Gogo, Western Australia: with a functional interpretation of the skeleton. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 197307.Google Scholar
Bolton, H. 1905. Notes on the geological horizon and palaeontology of the ‘Soapstone Bed', in the lower coal-measures, near Colne, Lancashire. Geological Magazine II, 433437.Google Scholar
Bradley Dyne, M. 1939. The skull of Amphicentrum granulosum. Proceedings of the Zoological Society of London, Series B 1939, 195210.Google Scholar
Bürgin, T. 1992. Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic of Monte San Georgio (Canton Tessin, Switzerland). Schweizerische Paläontologische Abhandlungen 114, 1–164.Google Scholar
Choo, B. 2011. Revision of the actinopterygian genus Mimipiscis (=Mimia) from the Upper Devonian Gogo formation of Western Australia and the interrelationships of the early Actinopterygii. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 102, 77104.Google Scholar
Choo, B. 2015. A new species of the Devonian actinopterygian Moythomasia from Bergisch Gladbach, Germany, and fresh observation on M. durgaringa from the Gogo Formation of Western Australia. Journal of Vertebrate Paleontology 35, e952817.Google Scholar
Choo, B., Long, J. A. & Trinajstic, K. 2009. A new genus and species of basal actinopterygian fish from the Upper Devonian Gogo Formation of Western Australia. Acta Zoologica – Stockholm 90(Suppl 1), 194210.Google Scholar
Cloutier, R. & Arratia, G. 2004. Early diversification of actinopterygians. In Arratia, G., Wilson, M. V. H. & Cloutier, R. (eds) Recent advances in the origin and early radiation of vertebrates, 217270. München: Verlag Dr Friedrich Pfeil.Google Scholar
Coates, M. I. 1993. New actinopterygian fish from the Namurian Manse Burn formation of Bearsden, Scotland. Palaeontology 36, 123146.Google Scholar
Coates, M. I. 1994. Actinopterygian and acanthodian fishes from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 317327.Google Scholar
Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Glasgow, with comments on the early evolution of actinopterygian neurocrania. Zoological Journal of the Linnean Society 122, 2759.Google Scholar
Coates, M. I. 1999. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society of London. Series B 354, 435462.Google Scholar
Coates, M. I. 2003. The evolution of paired fins. Theory in Biosciences 122, 266287.Google Scholar
Cope, E. D. 1887. Geology and palaeontology. The American Naturalist 1887, 10141019.Google Scholar
Davydov, V. I., Korn, D. & Schmitz, M. D. 2012. The carboniferous period. In Gradstein, F. M., Schmitz, M. & Ogg, G. (eds) The geologic timescale 2012, 1, 603651. Amsterdam: Elsevier.Google Scholar
Dillman, C. B. & Hilton, E. J. 2015. Anatomy and early development of the pectoral girdle, fin, and fin spine of sturgeons (Actinopterygii: Acipenseridae). Journal of Morphology 276, 241260.Google Scholar
Dineley, D. L. & Metcalf, S. J. 1999. Fossil fishes of Great Britain, 16. Peterborough: Joint Nature Conservation Committee.Google Scholar
Flammang, B. E., Alben, S., Madden, P. G. A. & Lauder, G. V. 2013. Functional morphology of the fin rays of teleost fishes. Journal of Morphology 274, 10441059.Google Scholar
Friedman, M. 2007. Styloichthys as the oldest coelacanth: implications for early osteichthyan interrelationships. Journal of Systematic Palaeontology 5, 289343.Google Scholar
Friedman, M., Pierce, S. E., Coates, M. I. & Giles, S. (2019) Feeding structures in the ray-finned fish Eurynotus crenatus (Actinopterygii, Eurynotiformes): implications for trophic diversification among Carboniferous actinopterygians. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. DOI: 10.1017/S1755691018000816.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History) Geology 37, 173428.Google Scholar
Gardiner, B. G., Schaeffer, B. & Masserie, J. A. 2005. A review of the lower actinopterygian phylogeny. Zoological Journal of the Linnean Society 144, 511525.Google Scholar
Gardiner, B. G. & Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society 97, 135187.Google Scholar
Giles, S., Coates, M. I., Garwood, R. J., Brazeau, M. D., Atwood, R., Johanson, Z. & Friedman, M. 2015a. Endoskeletal structure in Cheirolepis (Osteichthyes, Actinopterygii), an early ray-finned fish. Palaeontology 58, 849870.Google Scholar
Giles, S., Darras, L., Clément, G., Blieck, A. & Friedman, M. 2015b. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes. Proceedings of the Royal Society 282, 20151485.Google Scholar
Giles, S., Xu, G.-H., Near, T. & Friedman, M. 2017. Early members of 'living fossil' lineage imply later origin of modern ray-finned fishes. Nature 549, 265268.Google Scholar
Giles, S. & Friedman, M. 2014. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii). Journal of Paleontology 88, 636651.Google Scholar
Grandel, H. & Schulte-Merker, S. 1998. The development of the paired fins in the zebrafish (Danio rerio). Mechanisms of Development 79, 99120.Google Scholar
Huxley, T. H. 1880. On the applications of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of London 43, 649662.Google Scholar
Janvier, P. 1980. Osteolepid remains from the Devonian of the Middle East, with particular reference to the endoskeletal shoulder girdle. In Panchen, A. L. (ed.) The terrestrial environment and the origin of land vertebrates, 224254. London: Academic Press.Google Scholar
Jessen, H. L. 1972. Schultergürtel und pectoralflosse bei Actinopterygiern. Fossils and Strata 1, 1–101.Google Scholar
Lund, R. 2000. The new actinopterygian order Guildayichthyiformes from the lower Carboniferous of Montana (USA). Geodiversitas 22, 171206.Google Scholar
Mabee, P. M. & Noordsy, M. 2004. Development of the paired fins in the paddlefish, Polyodon spathula. Journal of Morphology 261, 334344.Google Scholar
McNeill Alexander, R. 1967. Functional design in fishes. London: Hutchinson & Co.Google Scholar
Mickle, K. E. 2017. The lower actinopterygian fauna from the Lower Carboniferous Albert shale formation of New Brunswick, Canada – a review of previously described taxa and a description of a new genus and species. Fossil Record 20, 4767.Google Scholar
Mickle, K. E., Lund, R. & Grogan, E. D. 2009. Three new palaeonsicoid fishes from the Bear Gulch Limestone (Serpukhovian, Mississippian) of Montana (USA) and the relationships of lower actinopterygians. Geodiversitas 31, 623668.10.5252/g2009n3a6Google Scholar
Moy-Thomas, J. A. & Bradley Dyne, M. 1938. The actinopterygian fishes from the Lower Carboniferous of Glencartholm, Eskdale, Dumfriesshire. Transactions of the Royal Society of Edinburgh 59, 437480.Google Scholar
Nielsen, E. 1942. Studies on Triassic fishes from East Greenland. I. Glaucolepis and Boresomus. Meddelelser om Grønland 138, 1–403.Google Scholar
Nielsen, E. 1949. Studies on Triassic fishes. II. Australosomus and Birgeria. Meddelelser om Grønland 146, 1–309.Google Scholar
Patterson, C. 1982. Morphology and relationships of primitive actinopterygian fishes. American Zoologist 22, 241259.Google Scholar
Poplin, C. & Lund, R. 2000. Two new deep-bodied palaeoniscoid actinopterygians from Bear Gulch (Montana, USA, Lower Carboniferous). Journal of Vertebrate Paleontology 20, 428449.Google Scholar
Poplin, C. & Véran, M. 1996. A revision of the actinopterygian fish Coccocephalus wildi from the Upper Carboniferous of Lancashire. Special Papers In Palaeontology Series 52, 729.Google Scholar
Pradel, A., Maisey, J. G., Mapes, R. H. & Kruta, I. 2016. First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase of Lawrenciella poplin, 1984 from the Carboniferous of Oklahoma. Geodiversitas 38, 489504.Google Scholar
Ramsbottom, W. H. C., Calver, M. A., Eager, R. M. C., Hodson, F., Holloday, D. W., Stubblefield, C. J. & Wilson, R. B. 1978. A correlation of Silesian rocks in the British Isles. Geological Society of London Special Report 10, 181.Google Scholar
Ride, W. D. L., Cogger, H. G., Dupuis, C., Kraus, O., Minelli, A., Thompson, F. C. & Tubbs, P. K. 1999. International code of zoological nomenclature. 4th edn. London: The International Trust for of Zoological Nomenclature, The Natural History Museum. 306 pp.Google Scholar
Sallan, L. C. 2014. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biological Reviews 89, 950971.Google Scholar
Sallan, L. C. & Coates, M. I. 2013. Styracopterid (Actinopterygii) ontogeny and the multiple origins of post-Hangenberg deep-bodied fishes. Zoological Journal of the Linnean Society 169, 156199.Google Scholar
Smith, C. H. & Walklate, J. 2017. Alfred Russel Wallace notes 7: Wallace, Bates and John Plant: the Leicester connection. The Linnean 33, 1824.Google Scholar
Traquair, R. H. 1879. On the structure and affinities of the Platysomidae. Transactions of the Royal Society of Edinburgh 29, 343391.Google Scholar
Traquair, R. H. 1888. New Palaeoniscidae from the English Coal-Measures. No. II. Geological Magazine III 5, 251254.Google Scholar
Traquair, R. H. 1890a. Observations on some fossil fishes from the Lower Carboniferous rocks of Eskdale, Dumfriesshire. The Annals and Magazine of Natural History 6, 493.Google Scholar
Traquair, R. H. 1890b. List of the fossil Dipnoi and Ganoidei of Fife and the Lothians. Proceedings of the Royal Society of Edinburgh 16, 385400.Google Scholar
Traquair, R. H. 1911. The Ganoid fishes of the British Carboniferous formations. Part V. Palaeontographical Society (Monographs) 64, 123158.Google Scholar
Ward, J. 1890. The geological features of the North Staffordshire coal-fields, their range and distribution, with a catalogue of the fossils of the Carboniferous System of North Staffordshire. Transactions of the North Staffordshire Institute of Mining and Mechanical Engineers 10, 1–189.Google Scholar
Wellburn, E. D. 1901. On the fish fauna of the Yorkshire Coal Measures. Proceedings of the Yorkshire Geological and Polytechnic Society 14, 159174.Google Scholar
Wilga, C. D. & Lauder, G. V. 2002. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. Journal of Experimental Biology 205, 23652374.Google Scholar
Wilhelm, B. C., Du, T. Y., Standen, E. M. & Larsson, H. C. E. 2015. Polypterus and the evolution of fish pectoral fin musculature. Journal of Anatomy 226, 511522.Google Scholar
Williamson, I. A. 1999. The Burnley Coalfied. British Mining 63, 527.Google Scholar
Young, J. 1866. On the affinities of Platysomus and allied genera. Quarterly Journal of the Geological Society of London 22, 301317.Google Scholar