Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T15:34:25.776Z Has data issue: false hasContentIssue false

Thermal modelling of stepwise anatexis in a thrust-thickened sialic crust

Published online by Cambridge University Press:  03 November 2011

E-an Zen
Affiliation:
Mail Stop 959, U.S. Geological Survey, Reston, VA 22092, U.S.A.

Abstract

One-dimensional modelling of the thermal history of a sialic crust thickened by multiple overstack thrusting of upper crustal material shows that anatexis is likely. Both the uplift rate and the length of the incubation period between end of tectonism and start of uplift are important controls on the amount and temperature of the melt. Heat of fusion does not significantly affect the long-term thermal structure of the crust if the melt is not extracted because only a small fraction of conductive heat is converted to latent heat, though short-term thermal effects of latent heat can be locally important.

Model results show that commonly <15% of mantle heat flux is converted to latent heat; even during peak melting in the most productive models, less than half of incremental mantle flux is converted. The results have obvious implications on the acceptability of proposed heat sources for crustal anatexis. Fusion could retard crustal temperature rise by nearly 100°C, but the system would recover except for situations of very rapid uplift. Understanding of the thermal evolution of a burial-uplift system requires knowledge not only of the timing of anatexis but of the pooling and movement of the magma, as well as the duration and nature of the incubation period; we are poorly equipped to measure these events. The model predicts that the characteristic time for anatexis in a thickened sialic crust is several tens of millions of years, comparable to the time lapse between orogenies; in making geological interpretations of magmatism, this time lag must be considered.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. TECTONOPHYSICS 44, 173184.CrossRefGoogle Scholar
Barreiro, B. & Aleinikoff, J. N. 1985. Sm/Nd and U/Pb isotopic relationships in the Kinsman Quartz Monzonite, New Hampshire. GEOL SOC AM ABSTR PROG 17, 3.Google Scholar
Birch, F., Schairer, J. F. & Spicer, H. C. (eds) 1942. Handbook of physical constants. GEOL SOC AM SPEC PAP 36.Google Scholar
Brewer, J. 1981. Thermal effects of thrust faulting. EARTH PLANET SCI LETT 56, 233244.CrossRefGoogle Scholar
Chamberlain, C. P. & England, P. C. 1985. The Acadian thermal history of the Merrimack synclinorium in New Hampshire. J. GEOL 93, 593602.CrossRefGoogle Scholar
Clemens, J. D. & Vielzeuf, D. 1987. Constraints on melting and magma production in the crust. EARTH PLANET SCI LETT 86, 287306.CrossRefGoogle Scholar
Daly, R. A. 1933. Igneous rocks and the depth of the Earth. New York: McGraw-Hill.Google Scholar
Davy, Ph. & Gillet, Ph. 1986. The stacking of thrust slices in collision zones and its thermal consequences. TECTONICS 5, 913929.CrossRefGoogle Scholar
Day, H. W. & England, P. C. 1984. Implications of thermal and tectonic models for the nature of isograd patterns in metamorphic belts. GEOL SOC AM ABSTR PROG 16, 484.Google Scholar
DeYoreo, J. J., Lux, D. R. & Guidotti, C. V. in press. The role of crustal anatexis and magma migration in regions of thickened continental crust. In Evolution of metamorphic belts. J GEOL SOC LONDON.Google Scholar
Draper, G. & Bone, R. 1981. Denudation rates, thermal evolution, and preservation of blueschist terrains. J GEOL 89, 601613.CrossRefGoogle Scholar
England, P. C. & Thompson, A. B. 1984. Pressure-temperaturetime paths of regional metamorphism, Pt. I. Heat transfer during the evolution of regions of thickened crust. J PETROL 25, 894928.CrossRefGoogle Scholar
England, P. C. & Thompson, A. B. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In Coward, M. P. (ed.) Collision tectonics. GEOL SOC LONDON SPEC PUB 19, 8394.CrossRefGoogle Scholar
Gable, D. J. & Hatton, T. 1983. Maps of vertical crustal movements in the conterminous United States over the last 10 million years: U.S. GEOL SURVEY Misc Invest Series Map 1–1315, 2 sheets, scale 1:5,000,000 and 1:10,000,000, 25 p. text.Google Scholar
Grant, J. A. 1983. Equilibria in low-pressure melting of pelitic rocks. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, melting and metamorphism, 292293. Nantwich: Shiva.Google Scholar
Hanson, R. B. & Barton, M. D. in press. Thermal structure and development of low-pressure metamorphic belts. J GEOPHYS RES.Google Scholar
Haugerud, R. A. 1986. 1DT—an interactive, screen-oriented microcomputer program for simulation of 1-dimensional geothermal histories. U.S. GEOL SURVEY Open-File Report 86511.Google Scholar
Haugerud, R. A. & Zen, E-an. in press. Metamorphic path studies—critique and prospectus. In Perchuk, L. (ed.) Advances in physical geochemistry. New York: Springer-Verlag.Google Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminum silicate phase diagram. AM J SCI 271, 97131.CrossRefGoogle Scholar
Huang, W. L. & Wyllie, P. J. 1981. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. J GEOPHYS RES 86B, 1051510529.CrossRefGoogle Scholar
Jaupart, C. & Provost, A. 1985. Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones. EARTH PLANET SCI LETT 73, 385397.CrossRefGoogle Scholar
Johnston, A. D. & Wyllie, P. J. in press. Constraints on the origin of Archean trondhjemites based on phase relationships of the Nûk Gneiss with H2O at 15 kbar. CONTRIB MINERAL PETROL.Google Scholar
Jurewicz, S. R. & Watson, E. B. 1985. The distribution of partial melt in a granitic system: The application of liquid phase sintering theory. GEOCHIM COSMOCHIM ACTA 49, 11091121.CrossRefGoogle Scholar
LeFort, P. 1981. Manaslu leucogranite: A collision signature of the Himalaya, a model for its genesis and emplacement. J GEOPHYS RES 86B, 1054510568.CrossRefGoogle Scholar
Lux, D. R., DeYoreo, J. J., Guidotti, C. V. & Decker, E. R. 1986. Role of plutonism in low-pressure metamorphic belt formation. NATURE 323, 794797.CrossRefGoogle Scholar
Marsh, B. D. 1984. Mechanics and energetics of magma formation and ascension. In Explosive volcanism: inception, evolution, and hazards, 6783. Washington: National Academy of Sciences Press, Studies in Geophys.Google Scholar
Mason, B. H. 1958. Principles of geochemistry, 2nd ed. New York: Wiley.CrossRefGoogle Scholar
McKenzie, D. P. 1984. The generation and compaction of partially molten rock. J PETROL 25, 713765.CrossRefGoogle Scholar
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH 79, 135156.Google Scholar
Osberg, P. H., Hussey, A. M. II & Boone, G. B. (eds) 1985. Bedrock geologic map of Maine. MAINE GEOL SURVEY, 1 sheet, scale 1:500,000.Google Scholar
Oxburgh, E. R. & Turcotte, D. L. 1974. Thermal gradients and regional metamorphism in overthrust terrains with special reference to the eastern Alps. SCHWEIZER MINERALPETROGR MITT 54, 641662.Google Scholar
Pajari, G. E., Currie, K. L., Cherry, M. E. & Pickerill, R. K. 1981. Heat energy, metamorphism and plutonism—a northern Appalachian model involving collapsed continental margins. GEOL SOC AM ABSTR PROG 13, 169.Google Scholar
Pinet, C. & Jaupart, C. 1987. A thermal model for the distribution in space and time of the Himalayan granites. EARTH PLANET SCI LETT 84, 8799.CrossRefGoogle Scholar
Plank, T. 1987. Magmatic garnets from the Cardigan pluton and the Acadian thermal event in southwest New Hampshire. AM MINERAL 72, 681688.Google Scholar
Presnall, D. C. 1969. The geometrical analysis of partial fusion. AM J SCI 267, 11781194.CrossRefGoogle Scholar
Richardson, S. W. & England, P. C. 1979. Metamorphic consequences of crustal eclogite production in overthrust orogenic zones. EARTH PLANET SCI LETT 42, 183190.CrossRefGoogle Scholar
Robie, R. A., Hemingway, B. S. & Fisher, J. R. 1978. Thermodynamic properties of minerals and related substances at 298·5K and 1 bar (105 pascals) pressure and at higher temperatures: U.S. GEOL SURV BULL 1452.Google Scholar
Selverstone, J., Spear, F. S., Franz, G. & Morteani, G. 1984. High-pressure metamorphism in the SW Tauern Window, Austria: P–T paths from hornblende-kyanite-staurolite schists. J PETROL 25, 501531.CrossRefGoogle Scholar
Streckeisen, A. L. 1973. Plutonic rocks: Classification and nomenclature recommended by the IUGS Subcommittee on the systematics of igneous rocks. GEOTIMES 18(10), 2630.Google Scholar
Tera, F.Brown, L., Morris, J., Sacks, I. S., Klein, J. & Middleton, R. 1986. Sediment incorporation in island-arc magmas: Inferences from 10Be. GEOCHIM COSMOCHIM ACTA 50, 535550.CrossRefGoogle Scholar
Thompson, A. B. & England, P. C. 1984. Pressure-temperaturetime paths of regional metamorphism, Pt. II, Their inference and interpretation using mineral assemblages in metamorphic rocks. J PETROL 25, 929955.CrossRefGoogle Scholar
Thompson, J. B. Jr., Robinson, P., Clifford, T. N. & Trask, N. J. Jr. 1968. Nappes and gneiss domes in west-central New England. In Zen, E-an, White, W. S., Hadley, J. B. & Thompson, J. B. Jr. (eds) Studies of Appalachian geology, northern and maritime, 203218. New York: Wiley-Interscience.Google Scholar
Tuttle, O. F. & Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi22O8-H2O. MEM GEOL SOC AM 74.Google Scholar
van, der Molen I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. CONTRIB MINERAL PETROL 70, 299318.Google Scholar
Vielzeuf, D. & Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relationships in the pelitic systems. Consequences for crustal differentiation. CONTRIB MINERAL PETROL 98, 257276.CrossRefGoogle Scholar
von, Bergen N. & Waff, H. S. 1986. Permeabilities, interfacial areas, and curvatures of partially molten systems; results of numerical computations of equilibrium microstructures. In Special Section, Partial melting phenomena in the Earth and planetary evolution. J GEOPHYS RES B91, 92619276.Google Scholar
Walther, J. V. & Orville, P. M. 1982. Volatile production and transport in regional metamorphism. CONTRIB MINERAL PETROL 79, 252257.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.CrossRefGoogle Scholar
Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. EARTH PLANET SCI LETT 46, 253265.CrossRefGoogle Scholar
Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. J GEOL SOC LONDON 144, 281297.CrossRefGoogle Scholar
Wickham, S. M. & Oxburgh, E. R. 1987. Low pressure regional metamorphism in the Pyrenees and its implications for the thermal evolution of rifted continental crust. PHILOS TRANS R SOC LONDON A321, 219243.Google Scholar
Wyllie, P. J. 1977. Crustal anatexis: An experimental review. TECTONOPHYSICS 43, 4171.CrossRefGoogle Scholar
Wyllie, P. J. 1983. Experimental studies on biotite- and muscovite-granites and some crustal magmatic sources. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, melting and metamorphism, 1226. Nantwich: Shiva.Google Scholar
Zen, E-an 1983. Exotic terranes in the New England Appalachians—Limits, candidates, and ages: A speculative essay. GEOL SOC AM MEM 158, 5581.Google Scholar
Zen, E-an 1988a. Phase relations of peraluminous granitic rocks and their petrogenetic implications. ANN REV EARTH PLANET SCI 16, 2151.CrossRefGoogle Scholar
Zen, E-an 1988b Evidence for accreted terranes and the effect of metamorphism. AM J SCI 288.Google Scholar
Zen, E-an 1988c. Tectonic significance of high-pressure plutonic rocks in the western cordillera of North American. In Ernst, W. G. (ed.) Metamorphism and crustal evolution of the western United States, Rubey volume no. VII. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Zen, E-an et al. 1983. Bedrock geological map of Massachusetts. U.S. GEOL SURVEY 3 sheets, scale 1:250,000.Google Scholar