Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T19:01:53.490Z Has data issue: false hasContentIssue false

Structure and habits of living branchiopod crustaceans and their bearing on the interpretation of fossil forms

Published online by Cambridge University Press:  03 November 2011

Geoffrey Fryer
Affiliation:
Freshwater Biological Association, The Ferry House, Ambleside, Cumbria LA22 OLP, England.

Abstract

Branchiopods are primitive crustaceans whose history extends back at least to the Devonian, yet some are highly successful today. Most fossil branchiopods do not show many features that lead to an understanding of function, but the Devonian lipostracan Lepidocaris is an exception. Recent work on living branchiopods, especially anostracans and anomopod cladocerans, enables Lepidocaris to be considered as a living animal. Work on extant anostracan nauplii also makes it possible to deduce how its larval stages swam and collected food.

Other early crustaceans are briefly considered and comments are made on the concept of “living fossils”. While rates of morphological and genomic evolution are often discordant, the concept is still useful. Some branchiopods, such as the Notostraca, display remarkable morphological stasis: on the basis of morphology, a Triassic and a present-day form appear to be conspecific. The latter may be referred to as a “living fossil”.

The outstanding morphological stasis of the crustacean nauplius is noted. Its existence in Cambrian times, deducible from its distribution among modern taxa, has been confirmed by Müller's finds. Such stasis, involving part of the genome of organisms whose adults display enormous adaptive radiation, has persisted with relatively small modifications since before the commencement of the entire radiation of vertebrates.

Type
Living forms and their bearing on the interpretation of fossils
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attramadal, Y. G. 1981. On a non-existent ventral filtration current in Hemimysis lamornae (Couch) and Praunus flexuosus (Müller) (Crustacea: Mysidacea). SARSIA 66, 283–6.CrossRefGoogle Scholar
Bergström, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Gupta, A. P. (ed.) Arthropod Phytogeny, pp. 356. New York: Van Nostrand Reinhold.Google Scholar
Bergström, J. 1980. Morphology and systematics of early arthropods. ABH NATURWISS VER HAMBURG 23, 742.Google Scholar
Briggs, D. E. G. 1976. The arthropod Branchiocaris n.gen., Middle Cambrian, Burgess Shale, British Columbia. BULL GEOL SURV CAN No. 264.Google Scholar
Briggs, D. E. G. 1983. Affinities and early evolution of the Crustacea: the evidence of the Cambrian fossils. In Schram, F. R. (ed.) Crustacean Phylogeny, pp. 122. Rotterdam: Balkema.Google Scholar
Brooks, H. K. 1955. A crustacean from the Tesnus Formation (Pennsylvanian) of Texas. J PALAEONTOL 29, 852–6.Google Scholar
Calman, W. T. 1909. Crustacea. A Treatise on Zoology, Part 7, (Fasc. 3 Ed. Lakester, R.).Google Scholar
Cannon, H. G. 1933. On the feeding mechanism of the Branchiopoda. PHIL TRANS R SOC B 222, 267352.Google Scholar
Cannon, H. G. 1958. The Evolution of Living Things. Manchester: University Press.Google Scholar
Cannon, H. G. & Manton, S. M. 1927. On the feeding mechanism of a mysid crustacean, Hemimysis lamornae. TRANS R SOC EDINBURGH 55, 219–53.CrossRefGoogle Scholar
Eldredge, N. 1984. Simpson's inverse: bradytely and the phenomenon of living fossils. In Eldredge. N. & Stanley, S. M. (eds) Living Fossils, pp. 272277. New York: Springer.CrossRefGoogle Scholar
Eriksson, S. 1934. Studien über die Fangapparate der Branchiopoden nebst einigen phylogenetischen Bemerkungen. ZOOL BIDR UPPS 15, 23287.Google Scholar
Franke, H. 1928. Der Fangapparat von Chydorus sphaericus. Z WISS ZOOL 125, 271298.Google Scholar
Fryer, G. 1963. The functional morphology and feeding mechanism of the chydorid cladoceran Eurycerus lamellatus (O. F. Müller). TRANS R SOC EDINBURGH 65, 335–81.CrossRefGoogle Scholar
Fryer, G. 1966. Branchinecta gigas Lynch, a non-filter-feeding, raptatory anostracan, with notes on the feeding habits of certain other anostracans. PROC LINN SOC 177, 1934.CrossRefGoogle Scholar
Fryer, G. 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. PHIL TRANS R SOC B 254, 221385.Google Scholar
Fryer, G. 1970. Biological aspects of parasitism of freshwater fishes by crustaceans and molluscs. SYMP BR SOC PARASITOL 8, 103118.Google Scholar
Fryer, G. 1974. Evolution and adaptive radiation in the Macrothricidae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. PHIL TRANS R SOC B 269, 137274.Google Scholar
Fryer, G. 1983. Functional ontogenetic changes in Branchinecta ferox (Milne-Edwards) (Crustacea: Anostraca). PHIL TRANS R SOC B 303, 229343.Google Scholar
Gauld, D. T. 1959. Swimming and feeding in crustacean larvae: the nauplius larva. PROC ZOOL SOC LONDON 132, 3150.CrossRefGoogle Scholar
Kornfield, I. L. 1978. Evidence for rapid speciation in African cichlid fishes. EXPERIENTIA 34, 335–6.CrossRefGoogle Scholar
Longhurst, A. R. 1955. Evolution in the Notostraca. EVOLUTION 9, 84–6.CrossRefGoogle Scholar
Manton, S. M. 1964. Mandibular mechanisms and the evolution of arthropods. PHIL TRANS R SOC B 247, 1183.Google Scholar
Müller, K. J. 1979. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. LETHAIA 12, 127.CrossRefGoogle Scholar
Müller, K. J. 1981. Arthropods with phosphatized soft parts from the Upper Cambrian “orsten” of Sweden. U.S. Dept. Interior, U.S. Geol. Survey: Open File Rept. 81743.Google Scholar
Müller, K. J. 1983. Crustacea with preserved soft parts from the Upper Cambrian of Sweden. LETHAIA 16, 93109.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. TRANS R SOC EDINBURGH EARTH SCI 76, 161–72.Google Scholar
Patton, J. L. 1984. Genetical processes in the Galapagos. BIOL J LINN SOC 21, 97111.CrossRefGoogle Scholar
Rolfe, W. D. I. 1967. Rochdalia, a Carboniferous insect nymph. PALAEONTOLOGY 10, 307–13.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. BR J PHIL SCI 15, 2740.CrossRefGoogle Scholar
Sanders, H. L. 1963. The Cephalocarida. Functional morphology, larval development, comparative external anatomy. MEM CONN ACAD ARTS SCI 15, 180.Google Scholar
Schopf, T. J. M. 1981a. Evidence for findings of molecular biology with regard to the rapidity of genomic change: implications for species durations. In Nicklas, K. J. (ed.) Palaeobotany, Palaoecology and evolution, Vol. 1, pp. 135192. New York: Praeger.Google Scholar
Schopf, T. J. M. 1981b. Punctuated equilibrium and evolutionary stasis. PALEOBIOLOGY 7, 156–66.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J. & Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. PALEOBIOLOGY 1, 6370.CrossRefGoogle Scholar
Scourfield, D. J. 1926. On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire)—Lepidocaris rhyniensis, gen, et sp. nov. PHIL TRANS R SOC B 214, 153–87.Google Scholar
Scourfield, D. J. 1940. Two new and nearly complete specimens of young stages of the Devonian fossil crustacean Lepidocaris rhyniensis. PROC LINN SOC 152, 290–8.CrossRefGoogle Scholar
Selander, R. K., Yang, S. Y., Lewontin, R. C. & Johnson, W. E. 1970. Genetic variation in the Horseshoe Crab (Limulus polyphemus), a phylogenetic “relic”. EVOLUTION 24, 402–14.Google ScholarPubMed
Stanley, S. M. 1979. Macroevolution. Pattern and Process. San Francisco: Freeman.Google Scholar
Tasch, , 1969. Branchiopoda. In Moore, R. G. (ed.) Treatise on Invertebrate Paleontology, Part R, Arthropoda 4, pp. 128191. Geol. Soc. Amer. & Univ. Kansas Press. Lawrence, Kansas.Google Scholar
Trusheim, F. 1938. Triopsiden (Crust. Phyll.) aus dem Keuper Frankens. PALEONT Z 19, 198216.Google Scholar
Trusova, Y. K. 1971. O pervoy nakhodkye v mezozoye predstavitoley otryada Anostraca. [First discovery of members of the order Anostraca (Crustacea) in the Mesozoic] PALEONTOL ZH 1971 No. 4, 6873.Google Scholar
van Straelen, V. 1943. Gilsonicaris rhenanus nov. gen., nov. sp., Branchipode Anostracé de l'Éodévonien du Hunsruck. BULL MUS R HIST NAT BELG 19, 110.Google Scholar
Williams, N. E. 1984. An apparent disjunction between the evolution of form and substance in the genus Tetrahymena. EVOLUTION 38, 2533.CrossRefGoogle ScholarPubMed
Yang, S. Y. & Patton, J. L. 1981. Genetic variability and differentiation in Galapagos Finches. AUK 98, 230–42.Google Scholar