Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T06:58:46.830Z Has data issue: false hasContentIssue false

Structural and metamorphic development of migmatites in the Svecokarelides, near Tampere, Finland

Published online by Cambridge University Press:  03 November 2011

D. S. Campbell
Affiliation:
Esso Exploration and Production UK, 50 Stratton Street, London W1X 6AU, United Kingdom.

Abstract

Five generations of structures (F1–F5), excluding faults, can be recognised in granitoid and trondhjemitoid migmatites with quartzofeldspathic neosome development associated with F1–F4 structures. Areal variation in metamorphic grade is shown by the zonal development of muscovite-sillimanite, potassium feldspar-sillimanite and potassium feldspar-cordierite assemblages in the palaeosomes. The climactic metamorphism, associated with MS2–MP2 mineral growth, occurred at between 675°C, 4 kb and 825°C, 6·5 kb. These pressure-temperature conditions are consistent with at least some neosome development having resulted from partial melting. The occurrence of a relatively shallow metamorphic geotherm and the resultant products are assessed in relation to metamorphic conditions known from elsewhere in the Svecokarelides.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. A. M., Newton, R. C. & Kleppa, O. J. 1977. The enthalpy change of theandalusite-sillimanite reaction and the Al2siO5 diagram. AM J SCI 277, 493585.Google Scholar
Ashworth, J. R. 1976. Petrogenesis of migmatites in the Huntly-Portsoy area, north-east Scotland. MINERAL MAG 40, 661–82.Google Scholar
Bell, T. H. & Duncan, A. C. 1978. A rationalised and unified shorthand terminology for lineations and fold axes in tectonites. TECTONOPHYSICS 47,T15.Google Scholar
Black, L. P., Bell, T. H., Rubenach, M. J. & Withnall, I. W. 1979. Geochronology of discrete structural-metamorphic events in a multiply deformed Precambrian terrain. TECTONOPHYSICS 54, 103–38.Google Scholar
Campbell, D. S. 1978. Structural and metamorphic studies in the Svecokarelides, Tampere, Finland. Unpublished Ph.D. Thesis, Glasgow University, 146 pp.Google Scholar
Campbell, D. S., Treloar, P. J. & Bowes, D. R. 1979. Metamorphic history of staurolite-bearing schist from the Svecokarelides, near Heinävaara, eastern Finland. GEOL FOREN FORH STOCKHOLM 101, 105–18.Google Scholar
Currie, K. L. 1971. The reaction 3 cordierite = 2 garnet + 4 sillimanite + 5 quartz as a geological thermometer in the Openicon Lake region, Ontario. CONTRIB MINERAL PETROL 33, 215–26.Google Scholar
Dewey, J. F. & Burke, K. C. A. 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. J GEOL 81, 683–92.Google Scholar
England, P. C. 1978. Some thermal considerations of the Alpine metamorphism — past, present and future. TECTONOPHYSICS 46, 21–0.Google Scholar
England, P. C. & Richardson, S. W. 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J GEOL SOC LONDON 134, 201–14.Google Scholar
Evans, B. W. 1965. Application of a reaction-rate method to the breakdown equilibria of muscovite and muscovite plus quartz. AM J SCI 263, 647–67.Google Scholar
Evans, B. W. & Guidotti, C. V. 1966. The sillimanite-potash feldspar isograd in western Maine U.S.A. CONTRIB MINERAL PETROL PETROL 12, 2562.Google Scholar
Ferguson, C. C. & Harte, B. 1975. Textural patterns at porphyroblast margins and their use in determining the time relations of deformation and recrystallization. GEOL MAG 112, 467–80.Google Scholar
Hansen, B. J. & Green, D. H. 1972. Experimental study of the stability of cordierite and garnet in pelite compositions at high pressures and temperatures. II. Compositions without excess alumino silicate. CONTRIB MINERAL PETROL 35, 331–54.Google Scholar
Hess, P. C. 1969. The metamorphic paragenesis of cordierite in pelitic rocks. CONTRIB MINERAL PETROL 24, 191207.Google Scholar
Hietanen, A. 1967. On the facies series in various types of metamorphism. J GEOL 75, 187214.Google Scholar
Himmi, R., Huhma, M. & Hakli, T. A. 1979. Mineralogy and metal distribution in the copper-tungsten deposit at Ylöjärvi, southwest Finland. ECON GEOL 74, 1183–97.Google Scholar
Hobbs, B. E., Means, W. D. & Williams, P. F. 1976. An outline of structural geology. New York: Wiley.Google Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminium silicate phase diagram. AM J SCI 271, 97131.Google Scholar
Holdaway, M. J. & Lee, S. M. 1977. Fe-Mg cordierite stability in high grade pelitic rocks based on experimental, theoretical and natural observations. CONTRIB MINERAL PETROL 63, 175–98.Google Scholar
Honkasalo, T. 1962. Gravity survey of Finland in the years 1945–1960. VEROEFF FINN GEOD INST 55.Google Scholar
Hopgood, A. M. 1980. Polyphase fold analysis of gneisses and migmatites. TRANS R SOC EDINBURGH EARTH SCI 71, 5568.Google Scholar
Hudleston, P. J. 1973. Fold morphology and some geometrical implications of theories of fold development. TECTONOPHYSICS 16, 146.Google Scholar
Huhma, A., Salli, I., Matisto, A. 1952. Suomen geologinen kartta, Geological map of Finland 1:100,000. Lehti-Sheet-2122. Ikaalinen. Otaniemi: Geologinen Tutkimuslaitos.Google Scholar
Kays, M. A. 1976. Comparative geochemistry of migmatized, interlayered quartzofeldspathic and pelitic gneisses: A contribution from rocks of southern Finland and northeastern Saskatchewan. PRECAMBRIAN RES 3, 433–62.Google Scholar
Kerrick, D. M. 1972. Experimental determination of muscovite + quartz stability with pH20<Ptotal. AM J SCI 272, 946–58.Google Scholar
Korsmann, K. 1977. Progressive metamorphism of the metapelites in the Rantasalmi-Sulkava area, southeastern Finland. BULL GEOL SURV FINLAND 290, 82 pp.Google Scholar
Kresten, P. 1971. Metamorphism and migmatization in the Vastervik area, S.E. Sweden. GEOL FOREN FORH STOCKHOLM 93, 743–64.Google Scholar
Leake, B. E. 1970. The origin of the Connemara migmatites of the Cashel district, Connemara, Ireland. Q J GEOL SOC LONDON 125 (for 1969), 219–76.Google Scholar
Marttila, E. 1976. Evolution of the Precambrian volcanic complex in the Kiuruvesi area, Finland. BULL GEOL SURV FINLAND 283, 109 pp.Google Scholar
Matisto, A. 1961. Kallioperäkartta. Lehti-Sheet-2123. Tampere. Suomen geologinen kartta 1:100,000. Otaniemi: Geologin Tutkimuslaitos.Google Scholar
Matisto, A. 1977. Tampereen kartta-alueen kallioperä. Summary:Precambrian rocks of the Tampere map-sheet area. Suomen geologinen kartta 1:100,000, Kallioperäkartan selitykset, 2123 Tampere. Espoo: Geologinen Tutkimuslaitos.Google Scholar
Misch, P. 1969. Paracrystalline microboudinage of zoned grains and other criteria for synkinematic growth of metamorphic minerals. AM J SCI 267, 4363.Google Scholar
Newton, R. C. 1972. An experimental determination of the high pressure stability of magnesian cordierite under wet and dry conditions. J GEOL 80, 398420.Google Scholar
Newton, R. C., Charlu, T. V. & Kleppa, O. J. 1974. A calorimetrie investigation of the stability of anhydrous Mg-cordierite with application to granulite facies metamorphism. CONTRIB MINERAL PETROL 44, 295311.Google Scholar
Olesen, N. O. 1978. Distinguishing between inter-kinematic and synkinematic porphyroblastesis. GEOL RUNDSCH 67, 278–87.Google Scholar
Olsen, S. N. 1977. Origin of the Baltimore Gneiss migmatites at Piney Creek, Maryland. BULL GEOL SOC AM 88, 1089–101.Google Scholar
Parras, K. 1946. On the coarse-grained garnet-cordierite gneisses of south and southwest Finland. BULL COMM GEOL FINLANDE 138, 17.Google Scholar
Perchuk, L. L. 1970. Equilibrium of biotite with garnet in metamorphic rocks. GEOCHEM INT 7, 157–9.Google Scholar
Powell, C. McA. 1974. Timing of slaty cleavage during folding of Precambrian rocks, northwest Tasmania. BULL GEOL SOC AM 85, 1043–60.Google Scholar
Ramsay, J. G. 1962. Interference patterns produced by the superposition of folds of ‘similar’ type. J GEOL 60, 466–81.Google Scholar
Ramsay, J. G. 1967. Folding and fracturing of rocks. New York: McGraw-Hill.Google Scholar
Richardson, S. W. 1968. Staurolite stability in a part of the system Fe-Al-Si-O-H. J PETROL 9, 467–88.Google Scholar
Salli, I. 1964. The structure and stratigraphy of the Ylivieska-Himanka schist area, Finland. BULL COMM GEOL FINLANDE 211, 67 pp.Google Scholar
Savolahti, A. & Marjonen, R. 1966. On the petrography of the metamorphic schist belt of Hantajärvi, Kiuruvesi commune, Finland. BULL COMM GEOL FINLANDE 222, 199217.Google Scholar
Schreyer, W. 1965. Metamorpher Übergang Saxothuringicum-Moldanubikum östlich Tirschenreuth-Opf., nachgewiesen durch phasenpetrologische Analyse. GEOL RUNDSCH 55, 491508.Google Scholar
Seifert, F. 1970. Low temperature compatibility relations of cordierite in haplopelites of the system K2O-MgO-Al2O3-SiO2-H2O. J PETROL 11, 7399.CrossRefGoogle Scholar
Seitsaari, J. 1951. The schist belt northeast of Tampere in Finland. BULL COMM GEOL FINLANDE 153, 120 pp.Google Scholar
Simonen, A. 1952. Suomen geologinen kartta. Geological map of Finland 1:100,000. Lehti-sheet-2124. Viljakkala-Teisko. Kallioperäkartan selitys. Explanation to the map of rocks. Otariemi: Geologinen Tutkimuslaitos.Google Scholar
Simonen, A. 1953a. Stratigraphy and sedimentation of the Svecofennidic, early Archaean supracrustal rocks in southwestern Finland. BULL COMM GEOL FINLANDE 160.Google Scholar
Simonen, A. 1953b. Kallioperäkartta, lehti-sheet 2124. Viljakkala-Teisko. Suomen geologinen kartta 1: 100,000. Otaniemi: Geologinen Tutkimuslaitos.Google Scholar
Stalhos, G. 1975. Beskrivning till berggrundskartan Nykoping NO. SVER GEOL UNDERS AFH 115.Google Scholar
Sturt, B. A. & Harris, A. L. 1961. The metamorphic history of the Loch Tummel area, central Perthshire, Scotland. LIVERPOOL MANCHESTER GEOL J 2, 689711.Google Scholar
Thompson, A. B. 1976a. Mineral reactions in pelitic rocks. II. Calculation of some P-T-X(Fe-Mg) phase relations. AM J SCI 276, 425–54.Google Scholar
Thompson, A. B. 1976b. Anatexis of crustal rocks and migmatite generation. Abstracts 25th International Geological Congress Sydney, Vol. 3, p. 674.Google Scholar
Thompson, A. B. & Algor, J. R. 1977. Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. CONTRIB MINERAL PETROL 63, 247–69.Google Scholar
Tracy, R. J., Robinson, P. & Thompson, A. B. 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. AM MINERAL 61, 762–75.Google Scholar
Vernon, R. H. 1975. Microstructural interpretation of some fibrolitic sillimanite aggregates. MINERAL MAG 40, 303–6.Google Scholar
Vernon, R. H. 1976. Metamorphic processes: reactions and microstructure development. London: Allen & Unwin.Google Scholar
Vernon, R. H. 1978. Porphyroblast-matrix microstructural relationships in deformed metamorphic rocks. GEOL RUNDSC 67, 288305.Google Scholar
Vernon, R. H. & Flood, R. H. 1977. Interpretation of metamorphic assemblages containing fibrolitic sillimanite. CONTRIB MINERAL PETROL 59, 227–35.Google Scholar
Vistelius, A. B. 1966. Structural diagrams. Oxford: Pergamon Press.Google Scholar
Williams, P. F. 1976. Relationships between axial plane foliations and strain. TECTONOPHYSICS 30, 181–96.Google Scholar
Williams, P. F., Means, W. D. & Hobbs, B. E. 1977. Development of axial planar slaty cleavage and schistosity in experimental and natural materials. TECTONOPHYSICS 42, 139–58.Google Scholar
Yardley, B. W. 1978. Genesis of the Skagit Gneiss migmatites, Washington, and the distinction between possible mechanisms of migmatization. BULL GEOL SOC AM 89, 941–51.Google Scholar