Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T04:26:12.745Z Has data issue: false hasContentIssue false

Significance of viscous folding in the migmatites of Chotanagpur Granite Gneiss Complex, eastern India

Published online by Cambridge University Press:  22 July 2020

Bibhuti GOGOI*
Affiliation:
Department of Geology, Cotton University, Guwahati, Assam781001, India
Hiredya CHAUHAN
Affiliation:
EPMA Laboratory, Department of Geology, Centre of Advanced Study, Banaras Hindu University, Varanasi221005, India
Gaurav HAZARIKA
Affiliation:
Department of Geology, Cotton University, Guwahati, Assam781001, India
Amiya BARUAH
Affiliation:
Department of Geology, Cotton University, Guwahati, Assam781001, India
Mukunda SAIKIA
Affiliation:
Department of Geology, Cotton University, Guwahati, Assam781001, India
Pallab Jyoti HAZARIKA
Affiliation:
Department of Geology, Cotton University, Guwahati, Assam781001, India
*
*Corresponding author. Email: [email protected]

Abstract

To understand the physico-chemical processes associated with migmatisation is an interesting petrological problem. New developments in microfluidics and chaotic mixing experiments have helped us to better perceive these processes from the migmatic rocks of the Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), eastern India. The migmatic rocks of CGGC have preserved folded leucocratic veins in amphibolites representing viscous folding. The viscous folding phenomenon occurred due to the interaction between leucosome and melanosome. Based on textural features and mineral chemical data interpretations, we infer that when granitic and pegmatitic magmas intruded the gneissic rocks and amphibolites of our study area, diffusion of heat and volatiles from the hotter felsic magmas to the colder country rocks initiated partial melting in the amphibolites, forming melanosomes. After their formation, the highly viscous felsic magmas veined into the melanosomes, by progressively melting them and then interacting, leading to chaotic mixing dynamics. The development of chaotic mixing allowed the leucosome to venture into the melanosome as veins by stretching and folding dynamics. As the leucocratic veins or leucosome traversed through the partially molten rock or melanosome due to advection, the veins underwent viscous folding owing to the exertion of compressional stress brought about by the viscosity difference between the two mediums. The occurrence of viscous folding exponentially increased the contact area between the leucosome and the melanosome, eventually leading to enhanced diffusion and augmented mixing between the two mediums. Evidence of mixing through elemental diffusion is well documented by the compositions of amphibole and biotite occurring in the leucosome and melanosome. These minerals show substitution of magnesium and ferrous ion that show linear variation between the endmember compositions.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Acharyya, S. K. 2003. The nature of mesoproterozoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Research 6, 197214.CrossRefGoogle Scholar
Aref, H. & El Naschie, M. S. 1995. Chaos applied to fluid mixing. Exeter, Pergamon Press (Reprinted from Chaos, Solutions and Fractals 4 Exeter).Google Scholar
Ashworth, J. R. 1976. Petrogenesis of migmatites in the Huntly-Portsoy area, north-east Scotland. Mineralogical Magazine 40, 661–82.CrossRefGoogle Scholar
Ashworth, J. R. & Mclellan, E. L. 1985 Textures. In Ashworth, J. R. (ed.) Migmatites, 180203. Springer, Boston, MA.CrossRefGoogle Scholar
Babcock, R. S. & Misch, P. 1989. Origin of the Skagit migmatites, North Cascades Range, Washington State. Contributions to Mineralogy Petrology 101, 485–95.CrossRefGoogle Scholar
Bhattacharyya, B. P. 1975. Structural evolution in the central part of Santhal Parganas district Bihar. Bulletin of the Geological, Mining and Metallurgical Society of India 48, 4147.Google Scholar
Brown, M. & Solar, G. S. 1998. Granite ascent and emplacement during contractional deformation in convergent orogens. Journal of Structural Geology 20, 1365–93.CrossRefGoogle Scholar
Chatterjee, N., Mazumdar, A. C., Bhattacharya, A. & Saikia, R. R. 2007. Mesoproterozoicgranulites of the Shillong-Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Research 152, 126.CrossRefGoogle Scholar
Chatterjee, N. & Ghosh, N. C. 2011. Extensive early Neoproterozoic high-grade metamorphism in north Chotanagpur gneissic complex of the central Indian tectonic zone. Gondwana Research 20, 362–79.CrossRefGoogle Scholar
Chung, C., Choi, D., Kim, J. M., Ahn, K. H. & Lee, S. J. 2010. Numerical and experimental studies on the viscous folding in diverging microchannels. Microfluidics and Nanofluidics 8, 767–76.CrossRefGoogle Scholar
Collins, W. J. & Sawyer, E. W. 1996. Pervasive granitoid magma transfer through the lower-middle crust during noncoaxial compressional deformation. Journal of Metamorphic Geology 14, 565–79.CrossRefGoogle Scholar
Cubaud, T. & Mason, T. G. 2006a. Folding of viscous threads in diverging microchannels. Physical Review Letters E 96, 114501.CrossRefGoogle Scholar
Cubaud, T. & Mason, T. G. 2006b. Folding of viscous threads in microfluidics. Physics of Fluids E 18, 091108.CrossRefGoogle Scholar
Cubaud, T. & Mason, T. G. 2007a. A microfluidic aquarium. Physics of Fluids E 19, 091108.CrossRefGoogle Scholar
Cubaud, T. & Mason, T. G. 2007b. Swirling of viscous fluid threads in microchannels. Physical Review Letters E 98, 264501.CrossRefGoogle Scholar
Cubaud, T. & Mason, T. G. 2008. Formation of miscible fluid microstructures by hydrodynamic focusing in plane geometries. Physical Review E 78, 056308.CrossRefGoogle ScholarPubMed
Darvishi, S. & Cubaud, T. 2012. Formation of capillary structures with highly viscous fluids in plane microchannels. Soft Matter 8, 10658.CrossRefGoogle Scholar
De Campos, C. P., Perugini, D., Ertel-Ingrisch, W., Dingwell, D. B. & Poli, G. 2011. Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study. Contributions to Mineralogy and Petrology 161, 863–81.CrossRefGoogle Scholar
Finger, F. & Clemens, J. D. 1995. Migmatization and “secondary” granitic magmas: effect of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria. Contributions to Mineralogy and Petrology 120, 311–26.CrossRefGoogle Scholar
Ghose, N. C. & Chatterjee, N. 2008. Petrology, tectonic setting and source of dykes and related magmatic bodies in the Chotanagpur Gneissic Complex, Eastern India. In Srivastava, R. K., Sivaji, C. & Chalapathi Rao, N. V. (eds) Indian dykes: geochemistry, geophysics and geochronology, 471–93. New Delhi, India: Narosa Publ. House Pvt. Ltd.Google Scholar
Gogoi, B., Saikia, A. & Ahmad, M. 2017. Titanite-centered ocellar texture: a petrological tool to unravel the mechanism enhancing magma mixing. Periodico di Mineralogia 86, 245–73.Google Scholar
Gogoi, B., Saikia, A. & Ahmad, M. 2018a. Field evidence, mineral chemical and geochemical constraints on mafic-felsic magma interactions in a vertically zoned magma chamber from the Chotanagpur Granite Gneiss Complex of Eastern India. Chemie der Erde 78, 78102.CrossRefGoogle Scholar
Gogoi, B., Saikia, A., Ahmad, M. & Ahmad, T. 2018b. Evaluation of magma mixing in the subvolcanic rocks of Ghansura felsic dome of Chotanagpur Granite Gneiss Complex, eastern India. Mineralogy and Petrology 112, 393413.CrossRefGoogle Scholar
Gogoi, B. & Saikia, A. 2018. Role of viscous folding in magma mixing. Chemical Geology 501, 2634.CrossRefGoogle Scholar
Gogoi, B. & Saikia, A. 2019. The genesis of emulsion texture owing to magma mixing in the Ghansura felsic dome of the Chotanagpur Granite Gneiss Complex of eastern India. The Canadian Mineralogist 57, 128.CrossRefGoogle Scholar
Hasalová, P., Schulmann, K., Lexa, O., Štípská, P., Hrouda, F., Ulrich, S., Haloda, J. & Týcová, P. 2008. Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. Journal of Metamorphic Geology 26, 2953.CrossRefGoogle Scholar
Henkes, L. & Johannes, W. 1981. The petrology of a migmatite (Arvika, Värmland, western Sweden). Neues Jahrbuch für Mineralogie – Abhandlungen 141, 113–33.Google Scholar
Johannes, W. 1988. What controls partial melting in migmatites? Journal of Metamorphic Geology 6, 451–65.CrossRefGoogle Scholar
Johannes, W. & Gupta, L. 1982. Origin and evolution of a migmatite. Contributions to Mineralogy and Petrology 79, 1423.CrossRefGoogle Scholar
Johnson, T., Hudson, N. & Droop, G. 2001. Partial melting in the Inzie Head gneisses: the role of water and a petrogenetic grid in KFMASH applicable to anatecticpeliticmigmatites. Journal of Metamorphic Geology 19, 99118.CrossRefGoogle Scholar
Karmakar, S., Bose, S., Sarbadhikari, A. B. & Das, K. 2011. Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: evidence for 990–940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. Journal of Asian Earth Sciences 41, 6988.CrossRefGoogle Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Howthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J. & Mandarino, T. 1997. Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association: commission on new mineral names. Mineralogical Magazine 61, 295321.CrossRefGoogle Scholar
Liu, M., Peskin, R. L., Muzzio, F. J. & Leong, C. W. 1994. Structure of the stretching field in chaotic cavity flows. American Institute of Chemical Engineers Journal 40, 1273–86.CrossRefGoogle Scholar
Loberg, B. 1963. The formation of a flecky gneiss and similar phenomena in relation to the migmatite and vein gneiss problem. Geologiska Foreningens I Stockholm Forhandlingar 85, 3109.CrossRefGoogle Scholar
Matthes, S., Okrusch, M. & Richter, P. 1972. Zurmigmatitbildungimodenwald. Neues Jahrbuch für Mineralogie – Abhandlungen 116, 225–67.Google Scholar
Mazumdar, S. K. 1988. Crustal evolution of the Chotanagpur gneissic complex and the mica belt of Bihar. Geological Society of India Memoir 8, 4984.Google Scholar
Mclellan, E. L. 1984. Deformational behavior of migmatites and problems of structural analysis in migmatite terrains. Geological Magazine 121, 339–45.CrossRefGoogle Scholar
Mehnert, K. R. 1968. Migmatites and the origin of granitic rocks. Amsterdam: Elsevier. 403 pp.Google Scholar
Misch, P. 1968. Plagioclase composition and nonanatectic origin of migmatitic gneisses in Northern Cascade Mountains of Washington State. Contributions to Mineralogy and Petrology 17, 170.CrossRefGoogle Scholar
Morgavi, D., Perugini, D., De Campos, C. P., Ertel-Ingrisch, W. & Dingwell, D. B. 2013. Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contributions to Mineralogy and Petrology 166, 615–38.CrossRefGoogle Scholar
Olsen, S. N. 1985. Mass balance in migmatites. In Ashworth, J. R. (ed.) Migmatites, 145–79. Springer, Boston, MA.Google Scholar
Ottino, J. M. 1989. The kinematics of mixing: stretching, chaos and transport. Cambridge: Cambridge University Press. 396 pp.Google Scholar
Ottino, J. M., Leong, C. W., Rising, H. & Swanson, P. D. 1988. Morphological structures produced by mixing in chaotic flows. Nature 333, 419–25.CrossRefGoogle Scholar
Perugini, D., De Campos, C. P., Ertel-Ingrisch, W. & Dingwell, D. B. 2012. The space and time complexity of chaotic mixing of silicate melts: implications for igneous petrology. Lithos 155, 326–40.CrossRefGoogle Scholar
Perugini, D., De Campos, C. P., Dingwell, D. B. & Dorfman, A. 2013. Relaxation of concentration variance: a new tool to measure chemical element mobility during mixing of magmas. Chemical Geology 335, 823.CrossRefGoogle Scholar
Pitcher, W. S. & Berger, A. R. 1972. The geology of Donegal. London: Wiley. 435 pp.Google Scholar
Renggli, C. J., Wiesmaier, S., De Campos, C. P., Hess, K. U. & Dingwell, D. B. 2016. Magma mixing induced by particle settling. Contributions to Mineralogy and Petrology 171, 96.CrossRefGoogle ScholarPubMed
Robin, P. Y. 1979. Theory of metamorphic segregation and related processes. Geochimica et Cosmochimica Acta 43, 1587–600.CrossRefGoogle Scholar
Roy, A. K. 1977. Structural and metamorphic evolution of the Bengal Anorthosite and associated rocks. Journal of the Geological Society India 18, 203–23.Google Scholar
Saha, A. K. 1994. Crustal evolution of Singhbhum-North Orissa, Eastern India. Memoirs of the Geological Society of India 27, 341.Google Scholar
Saikia, A., Gogoi, B., Ahmad, M. & Ahmad, T. 2014. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex. Journal of Earth System Science 123, 959–87.CrossRefGoogle Scholar
Saikia, A., Gogoi, B., Kaulina, T., Lialina, L., Bayanova, T. & Ahmad, M. 2017. Geochemical and U-Pb zircon age characterization of granites of Bathani volcano sedimentary sequence, Chotanagpur granite gneiss complex, eastern India: vestiges of Nuna supercontinent in the Central Indian Tectonic Zone. In Pant, N. C. & Dasgupta, S. (eds) Crustal evolution of India and Antarctica: the supercontinent connection, 457, 233–52. Bath, England: Geological Society of London Special Publications.Google Scholar
Saikia, A., Gogoi, B., Ahmad, M., Kumar, R., Kaulina, T. & Bayanova, T. 2019. Mineral chemistry, Sr-Nd isotope geochemistry and petrogenesis of the granites of Bathani volcano-sedimentary sequence from the northern fringe of Chotanagpur Granite Gneiss Complex of Eastern India. In Mondal, M. E. A. (ed.) Geological evolution of the Precambrian Indian shield, 79–120 pp. Cham, Switzerland: Society of Earth Scientists Series, Springer.Google Scholar
Sarkar, A. N. 1988. Tectonic evolution of the Chotanagpur plateau and the Gondwana basins in eastern India: an interpretation based on supra-subduction geological processes. Geological Society of India Memoir 8, 127–46.Google Scholar
Sawyer, E. 2008. Atlas of migmatites. Canada: The Canadian Mineralogist Special Publication. 387 pp.CrossRefGoogle Scholar
Sawyer, E. W. 1999. Criteria for the recognition of partial melting. Physics and Chemistry of the Earth 24, 269–79.CrossRefGoogle Scholar
Sederholm, J. J. 1913. Die Entstehung der migmatitischenGesteine. Geologische Rundschau 4, 174–85.CrossRefGoogle Scholar
Sederholm, J. J. 1934. Onmigmatites and associated Precambrian rocks of south western Finland. Bulletin Commission Geologique de Finlande 107, 168.Google Scholar
Simmons, W. B. & Webber, K. L. 2008. Pegmatite genesis: state of the art. European Journal of Mineralogy 20, 421–38.CrossRefGoogle Scholar
Speer, J. A. 1984. Micas in igneous rocks. In Bailey, S. W. (ed.) Micas: reviews in mineralogy, 299–356 pp. Washington, DC: Mineralogical Society of America.Google Scholar
Trumbull, R. B. 1988. Petrology of flecked gneisses in the northern Wet Mountains, Fremont County, Colorado. Geological Society of America Bulletin 100, 247–56.2.3.CO;2>CrossRefGoogle Scholar
Turner, F. J. 1968. Metamorphic petrology: mineralogical and field aspects. New York: McGraw-Hill. 403 pp.Google Scholar
Ubide, T., Gale, C., Larrea, P., Arranz, E., Lago, M. & Tierz, P. 2014. The relevance of crystal transfer to magma mixing: a case study in composite dykes from the central Pyrenees. Journal of Petrology 55, 1535–59.CrossRefGoogle Scholar
Weinberg, R. F. & Searle, M. P. 1998. The Pangong Injection Complex, Indian Karakoram: a case of pervasive granite flow through hot viscous crust. Journal of the Geological Society 155, 883–91.CrossRefGoogle Scholar
White, R. W., Pomroy, N. E. & Powell, R. 2005. An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic Geology 23, 579602.CrossRefGoogle Scholar
Whitney, D. L. 1992. Origin of CO2-rich fluid inclusions in leucosomes from the Skagit migmatites, North Cascades, Washington, USA. Journal of Metamorphic Geology 10, 715–25.CrossRefGoogle Scholar
Winkler, H. G. F. 1961. Die Genese von Graniten und Migmatiten auf Grundneuer Experimente. Geologische Rundschau 61, 347–64.Google Scholar
Winkler, H. G. F. 1979. Petrogenesis of metamorphic rocks. New York: Springer-Verlag. 320 pp.Google Scholar
Yardley, B. W. D. 1978. Genesis of the Skagit Gneiss migmatites, Washington, and the distinction between possible mechanisms of migmatization. Geological Society of America Bulletin 89, 941–51.2.0.CO;2>CrossRefGoogle Scholar