Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T23:19:01.712Z Has data issue: false hasContentIssue false

Relationships between granitoids and mineral deposits: three-dimensional modelling of the Variscan Limousin Province (NW French Massif Central)

Published online by Cambridge University Press:  03 November 2011

C. Le Carlier de Veslud
Affiliation:
Rue du Doyen Marcel Roubault BP 40, 54 500 Vandoeuvre-lès-Nancy, France
M. Cuney
Affiliation:
UMR 7566 G2R-CREGU, BP 239, 54506, Vandoeuvre-lès-Nancy, France
J. J. Royer
Affiliation:
Rue du Doyen Marcel Roubault BP 40, 54 500 Vandoeuvre-lès-Nancy, France
J. P. Floc'h
Affiliation:
Facultés des Sciences, Laboratoire de Géologie Structurale et Hydrothermalisme, 123 Av. A. Thomas, 87060 Limoges, France
L. Améglio
Affiliation:
Rhodes University, Geology Department, P.O. Box 94, Grahamstown 6140, South Africa
P. Alexandrov
Affiliation:
Rue du Doyen Marcel Roubault BP 40, 54 500 Vandoeuvre-lès-Nancy, France
J. L. Vigneresse
Affiliation:
UMR 7566 G2R-CREGU, BP 239, 54506, Vandoeuvre-lès-Nancy, France
P. Chèvremont
Affiliation:
BRGM, SNG-CMG-GEO, BP 6009, 45060 Orléans cedex 2, France
Y. Itard
Affiliation:
BRGM, SNG-CMG-GEO, BP 6009, 45060 Orléans cedex 2, France

Abstract

Multidisciplinary three-dimensional modelling, involving geophysical, structural and geochemical data, has been used to study the relationships between magmatism, tectonics, fluid circulation and mineralisation in the northern Limousin, and to provide P-T-Z-t paths constrained by the available dating. The ore deposit occurrence displays little spatial relationship with granites emplaced in the 360-320 Ma period, probably because the low global permeability and tectonic regime did not allowed vertical fluid exchanges to be established. In contrast, the change in the tectonic regime induced by the delamination of the lower lithosphere (320-300 Ma), and characterised by the passage to general extension, has played a major metallogenic role. However, the ore deposit processes appear to be specific to each metal. Most of the W-Sn deposits appear to be synchronous with rare metal granites emplacement, at c. 310 Ma, that allowed the focus of fluids of different origins towards the apex of plutons. In contrast, for Au and U, the whole mineralisation process covers several tens of-millions of years. It is controlled by the regional tectonic evolution of the Limousin area during the same period, and especially by a rapid exhumation of the ductile crust which occurred in the 310-300 Ma period.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aissa, M., Weisbrod, A.& Marignac, C., 1987. Caractéristiques chimiques et thermodynamiques des circulations hydrothermales du site d'Echassières. In Cuncy, M.& Autran, J. (eds) Echassières: le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares. Géologie de la France 2–3, 335–50.Google Scholar
Alikouss, S. 1993. Contribution à l'étude des fluides crustaux: approroche expérimentale et analytique (Unpublished PhD Thesis, INPL, Nancy).Google Scholar
Alexandrov, P. 2000. Géochronologie U/Pb et 40Ar/39 Ar de deux segments Calédoniens et Hercyniens de la chaîne Varisque: Haut Limousin et Pyrénées Orientales (Unpublished PhD Thesis, INPL Nancy).Google Scholar
Alexandrov, P., Cheilletz, A., Deloule, E.& Cuney, M. 2000. 319 ± 7 Ma age for the Blond granite (northwest Limousin, French Massif Central) obtained by U/Pb ion-probe dating of zircons. Académie des Sciences, Comptes Rendus 330, 17 Google Scholar
Améglio, L., Vigneresse, J. L.& Bouchez, J. L. 1997. Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. In Bouchez, J. L., Button, D. H. W& Stephens, W. E. (eds) Granite: From Segregation of Melt to Emplacement Fabrics 199214. Dordrecht: Kluwer.Google Scholar
Améglio, L., Cuney, M., Gagny, C.& Vigneresse, J. L. 1999. Shearfault controlled emplacement of the Blond leucogranite (Limousin, France) inferred from geophysical and structural data. EUG 10. Journal of Conference Abstracts 4. 1, 458, Cambridge Publications.Google Scholar
ASGA 1999. gOcad User's Reference Manual. ASGA, Nancy, France.Google Scholar
Audrain, J., Vigneresse, J. L., Cuney, M.& Friedrich, M. 1989. Modèle gravimétrique et mise en place du complexe granitique hyperalumineux de Saint-Sylvestre (Massif Central français). Académie des Sciences, Comptes Rendus, Série II 309, 1907–14.Google Scholar
Autran, A.& Guillot, P. 1975. L'évolution orogénique et métamorphique du Limousin au Paléozoïque (Massif Central français). Acade'mie des Sciences, Comptes Rendus, Série D 280, 1649–52.Google Scholar
Barbier, J. 1967. Étude pétrographique et géochimique du granite à deux micas des Monts de Blond. Sciences de la Terre, Nancy 12(3), 183206.Google Scholar
Berthier, F., Duthou, J. L.& Roques, M. 1979. Datations géochronologiques Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-dévonien de mise en place de l'un de ses faciès type. Bulletin du B.R.G.M; série II; section II 2, 5972.Google Scholar
Bertrand, J. M., Leterrier, J., Delapierre, E., Brouand, M., Cuney, M., Stussi, J. M.& Virlojeux, D. 2001. Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (seuil du Poitou) et de Vendée. Géologie de la France (in press).Google Scholar
Bitri, A., Bouchot, V., Ledru, P., Milési, J. P., Bellot, J. P., Roig, J. Y.& Truffert, C. 1999. Deep seismic reflexion profile in Limousin region (French Massif Central). Geophysical Research Abstracts, EGS'99. 24th General Assembly. Den Haag 1(1), 46.Google Scholar
Boiron, M. C, Cathelineau, M.& Trescases, J. J. 1989. Conditions of gold-bearing arsenopyrite crystallization in the Villeranges basin, Marche Combrailles shear zone, France: A mineralogical and fluid inclusion study. Economic Geology 84, 1340–62.Google Scholar
Bouchot, V., Gros, Y.& Bonnemaison, M. 1989. Structural control on the auriferous shear zones of the St-Yrieix District, Massif Central, France: Evidence from the Le Bourneix and Lauricras gold deposits. Economic Geology 84, 1315–27.Google Scholar
Bouchot, V., Milési, J. P., Lescuyer, J. L.& Ledru, P. 1997. Les minéralisations aurifères de la France dans leur cadre géologique autour de 300 Ma. Chronique de la Recherche Minière 528, 1362.Google Scholar
Bouchot, V., Alexandrov, P., Monié, P., Morillon, A. C., Cheilletz, A., Ruffet, G., Roig, J. Y., Charonnat, X. Chauvet, A., Faure, M., Le Carlier, C., Cuney, M., Becq-Giraudon, J. F., Truffert, C., Ledru, P.& Milési, J.P. 1999. The W–As–Au–Sb metalliferous peak: an ‘instantaneous’ marker of the late-orogenic evolution of the Variscan belt at 310-305 Ma. In Colloque GéoFrance 3D: results and perspectives, Document BRGM 293, 33–6.Google Scholar
Bruguier, O., Becq-Giraudon, J. F., Bosch, D.& Lancelot, J. 1998. Late Visean (Upper Mississippian) Hidden Basin in the Internal Zones of the Variscan Belt: U-Pb Zircon Evidence from the French Massif Central. Geology 26, 627–30.Google Scholar
Burg, J. P., Van Den Driessche, J.& Brun, J. P. 1994. Syn- to post-thickening extension: mode and consequences. Acadéamie des Sciences, Comptes Rendus, Série II 319, 1019–32.Google Scholar
Burnol, L. 1974. Géochimie du béryllium et types de concentration dans les leucogranites du Massif Central français. Mémoires du BRGM 85.Google Scholar
Cathelineau, M., Boiron, M. C., Holliger, P.& Poty, B. 1990. Metallogenesis in the French part of the Variscan orogen. Part II: Time-space relationships between U, Au and Sn–W ore deposition and geodynamic events – mineralogical and U–Pb data. Tectonophysics 177, 5979.Google Scholar
Cathelineau, M., Marignac, C., Fourcade, S., Cuney, M., André, A. S., Boiron, M. C., Chauvet, A., Charonnat, X., Lespinasse, M., Martineau, F., Menez, B., Nomade, S., Philippot, P., Souhassou, M., Vallance, J.& Milesi, J. P. 1999. Sources of fluids and regimes of fluids during the Late Carboniferous uplift of the Variscan crust and consequences on metal transfer and deposition. In Colloque GéoFrance 3D: results and perspectives, Document BRGM 293, 46–8.Google Scholar
Chèvremont, P., Constans, J., Ledru, P.& Ménillet, F. 1992. Booklet of the 1/50,000th geological map of Oradour. BRGM.Google Scholar
Cuney, M., Friedrich, M., Blumenfeld, P., Bourguignon, A., Boiron, M. C., Vigneressc, J. L.& Poty, B. 1990. Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentration in pre-Variscan and Variscan formations – a comparison with Sn, W and Au. Tectonophysics 177, 3957.Google Scholar
Cuney, M., Stussi, J.M.& Marignac, C. 1994. A geochemical comparison between west- and central European granites: implications for the origin of rare metal mineralisations. In Seltmann, R., Kämpf, H.& Möller, P. (eds) Metallogeny of collisional orogens 96102. Prague: Czech Geological Survey.Google Scholar
Cuney, M., Pin, C., Raimbault, L.& Gagny, C. 1999. Magmatic fractionation and geochemical exchange with enclosing rocks in F, Li, P and rare metal enriched microgranite dykes, a three dimension approach. In Barbarin, B. (ed.) The origin of granite and related rocks, Fourth Hutton Symposium Abstracts, Document du BRGM 290, 231.Google Scholar
Cuney, M.& Stussi, J. M. 1999. The origins of the two main types of Variscan peraluminous granites from the French Massif Central. In Barbarin, B. (ed.) The origin of granites and related rocks – Abstracts of the 4th Hutton Symposium. Document du BRGM 290, 207. Clermont-Ferrand: BRGM.Google Scholar
Derré, C. 1982. Caractéristiques de la distribution des gisements à etain et tungstène dans l'ouest de l'Europe. Mineralium Deposita 17, 5577.Google Scholar
Dubessy, J., Ramboz, C., Nguyen-Trung, C., Cathelineau, M., Charoy, B., Cuney, M., Leroy, J., Poty, B.& Weisbrod, A. 1987. Physical and chemical controls (fO2, T, pH) of the opposite behaviour of U and Sn-W as exemplified by hydrothcrmal deposits in France and Great Britain, and solubility data. Bulletin Minéralogique 110, 261–81.Google Scholar
Dumas, E., Faure, M.& Pons, J. 1990. L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque. Académie des Sciences, Comptes Rendus, Série II, 310, 1533–9.Google Scholar
Duthou, J. 1978. Les granitoïdes du Haut Limousin (Massif Central français) chronologie Rb/Sr de leur mise en place; le thermo-métamorphisme carbonifère. Bulletin de la Société Géologique de France, (7), 20, 229–35.Google Scholar
Duthou, J., Cantagrcl, J. M., Didier, J.& Vialette, Y. 1984. Paleozoic granitoids from the French Massif Central: age and origin studied by the 87Rb-87Sr system. Physics of the Earth and Planetary Interiors 35, 131–44.Google Scholar
Eisenlohr, B., Groves, D.& Partington, G. 1989. Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia. Economic Geology 24, 18.Google Scholar
Faure, M.& Pons, J. 1991. Crustal thinning recorded by the shape of Namurian-Westphalian leucogranitc in the Variscan belt of the northern Massif Central, France. Geology 19, 730–3.Google Scholar
Faure, M. 1995. Late orogenic Carboniferous extensions in the Variscan French Massif Central. Tectonics 19, 132–53.Google Scholar
Furlong, K. P., Hanson, R. B.& Bowers, J. R. 1991. Modelling thermal regimes. In Kerrick, D. M. (ed.) Contact metamorphism, Reviews in Mineralogy 26, 437505.Google Scholar
Gebauer, H., Bernard-Griffiths, J., & Grünenfelder, M. 1981. U/Pb zircon and monazite dating of mafic-ultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Massif Central. Contributions to Mineralogy and Petrology 76, 292300.Google Scholar
Gérard, B. 1997. Modélisation 3D des transferts de chaleur et de fluide dans les formations sédimentaires. Application aux réactcurs d'Oklo (Gabon) (Unpublished Ph.D. Thesis, INPL, Nancy).Google Scholar
Guincberteau, B., Cuney, M.& Carre, J.L. 1989. Structure magmatique et plastique des granites de la Marche oceidentale: un couloir transformant hercynien dans le NW du Massif Central Français. Académic des Sciences, Comptes Rendus, Série II 309, 1695–702.Google Scholar
Holliger, P., Cuney, M., Friedrich, M.& Turpin, L. 1986. Ages carbonifères de l'unité de Brame du complcxe granitique peralumineux de Saint Sylvestre (NO Massif Central) défini par les données isotopiques sur zircon et monazite. Académie des Sciences, Comptes Rendus, Série II 303, 1309–14.Google Scholar
Laurent, O. 1989. Le sondage de Créchat-les-Sibicux, apports à la connaissance géologique de l'ouest du Massif Central français (Unpublished Ph.D. Thesis, Université Pierre et Marie Curie, Paris).Google Scholar
Ledru, P., Lardeaux, J. M., Santallier, D., Autran, A., Qućnardel, J. M., Floc'h, J.P., Lerouge, G., Maillet, N., Marchand, I.& Ploquin, A. 1989. Où sont passées les nappes dans le Massif Central français? Bulletin de la Société Géologique de France 8, 605–18.Google Scholar
Lerouge, C., Fouillac, A. M., Roig, J. Y.& Bouchot, V. 1999. Stable isotope constraints on the formation temperature and origins of the Late Variscan As-W mineralization at La Chataigneraie, Massif Central, France. EUG 10. Journal of Conference Abstracts 4, 1, 483, Cambridge Publications.Google Scholar
Leroy, J.& Holliger, P. 1984. Mineralogical, chemical and isotopic (U-Pb method) studies of the Hercynian uraniferous mineralizations (Fanay and Margnac mines, Limousin, France). Chemical Geology 45, 121–34.Google Scholar
Lespinasse, M., Mollier, B., Delair, I.& Bladier, Y. 1986. Structuration tangentiellc et chevauchements carbonifères dans les leucogranites du NW du Massif Central français: l'exemple des failles de Bussière-Madelcine et d'Arrênes-Ouzilly. Académie des Sciences, Comptes Rendus, Série II 303, 1575–80.Google Scholar
Mallet, J. L. 1992. Discrete smooth interpolation. Computer-aided design 24(4), 178–91.Google Scholar
Mallet, J. L. 1997. Discrete modelling for natural objects. Mathematical Geology 29, 199219.Google Scholar
Marignac, C.& Cuney, M. 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineralium Deposita 34, 472504.Google Scholar
Nenert, S., Bril, H.& Floc'h, J. P. 1997. Les districts aurifères du Haut-Limousin Massif Central français: approche minéralogique et géochimique. Chronique de la Recherche Minière 526, 315.Google Scholar
Nesbitt, B.& Muehlenbachs, K. 1995. Geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia, Canada. Geological Society of America Bulletin 107, 1033–50.Google Scholar
Peiffer, M. T. 1986. La signification de la ligne tonalitiquc du Limousin. Son implication dans la structuration varisque du Massif Central français. Académie des Sciences, Comptes Rendus, Série II 303, 305–10.Google Scholar
Pin, C. 1989. Essai sur la chronologic et lévolution de la géodynamique de la chaîne hercyniennc d'Europe (Doct. Sci. Thesis, Université Clermont-Ferrand).Google Scholar
Pin, C.& Vielzeuf, D. 1983. Granulites and related rocks in Variscan median Europe: A dualistic interpretation. Tectonophysics 93, 4774.Google Scholar
Pollard, P. J. 1989. Geochemistry of granites associated with tan-talum and niobium mineralisation. In Möller, P., Cerny, P.& Saupé, F. (eds) Lanthanides, tantalum and niobium, 27–9. Berlin: Springer.Google Scholar
Raimbault, L. 1998. Minéralisations Sn-W et granites à métaux rares en Nord-Limousin. Zonalité géochimique du prospect de Moulin Barret ct du massif granitiquc de Blond. Rapport LHM/RD/98/56, GéoFrance 3D project.Google Scholar
Roig, J. Y.& Faure, M. 2000. La tectoniquc cisaillante polyphasćc du Sud Limousin (Massif Central français) et son interprétation dans un modèle d'évolution polycycliquc de la chaîne hercynicnne. Bulletin de la Société Géologique de France 171, 295307.Google Scholar
Rolin, P.& Quénardel, J. M. 1982. Modèle de mise en place syntectonique d'un massif de leucogranite hercynien (Crozant, NW du Massif Central français). Académie des Sciences, Comptes Rendus, Série II, 294, 799802.Google Scholar
Scaillet, S., Cheilletz, A., Cuney, M., Farrar, E., & Archibald, A. D., 1996a. Cooling pattern and mineralisation history of the Saint-Sylvestre and Western Marche leucogranite pluton, French Massif Central: I. 40Ar/39 Ar isotopic constraints. Geochimica et Cosmochimica Acta 60(23), 4653–71.Google Scholar
Scaillet, S., Cuney, M.Le Carlier de Veslud, C, Cheilletz, A.& Royer, J. J. 1996b. Cooling pattern and mineralisation history of the Saint Sylvestre and Western Marche leucogranite pluton, French Massif Central: II. Thermal modelling and implications for the mechanisms of U-mineralization. Geochimica et Cosmochimica Acta 60(23), 4673–88.Google Scholar
Stussi, J. M. 1985. Magmatic control of granite related mineralizations in the French Variscan. Fortschritt in Mineralogie 63, 229.Google Scholar
Stussi, J. M.& Cuney, M. 1993. Modéles d'évolution géochimique de granitoïdes paralumineux. L'exemple du complexe plutonique varisque du Millevaches (Massif central français). Bulletin de la Société Géologique de France 164, 585–96.Google Scholar
Touray, J. C, Marcoux, E., Hubert, P., & Proust, D. 1989. Hydrothermal process and ore forming fluids in the Le Bourneix gold deposit, central France. Economic Geology 84, 1328–39.Google Scholar
Turpin, L., Cuney, M., Friedrich, M., Bouchez, J. L.& Aubertin, M. 1990a. Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central; implication for crustal history reconstitutions. Contributions to Mineralogy and Petrology 104, 163–72.Google Scholar
Turpin, L., Leroy, I., & Sheppard, S. 1990b. Isotopic systcmatics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chemical Geology, 88, 8598.Google Scholar
Vallance, J., Boiron, M. C, Fourcade, S., Cathelineau, M.& Marignac, C. 1999. Fluid migration in granites associated with W-Sn-(Au) ores; The example of the Vaulry deposit in the Blond Rare Metal Granite (NW French Massif Central). EUG 10, Journal of Conference Abstracts 4, 1, 478. Cambridge Publications.Google Scholar
Vasseur, G. Dupis, A. Gallart, I.& Robin, G. 1990. Données géophysiques sur la structure du massif leucogranitique du Limousin. Bulletin de la Société Géologique de France 1, t.VI, 311.Google Scholar
Vigneresse, J. L.& Cuney, M. 1994. The Western Marche granite, France. In Haslam, W. et al. (eds) Granite, metallogeny, lineaments and rock-fluid interactions. British Geological Survey Research Report SP/94/I, 54–9. Keyworth: BGS.Google Scholar
Virlogeux, D., Roux, J.& Guillemot, D. 1999. Apport de la géophysique à la connaissance du massif de Charroux-Civray ct du socle poitevin. In Etudes duMassif de Charroux-Civray, Actes des journées scientifiques CNRS-ANDRA, EDP sciences, Les Ulis, 33-62.Google Scholar