Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T18:07:58.178Z Has data issue: false hasContentIssue false

Physiological constraints upon marine organisms

Published online by Cambridge University Press:  03 November 2011

J. D. Robertson
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

Abstract

When compared with sea water, most marine invertebrates are isosmotic but show varying degrees of ionic regulation, from accumulation of potassium and calcium to reductions of magnesium and sulphate. A reduction of sulphate in pelagic animals such as jellyfish and salps, and an accumulation of ammonium ions in arrow-worms (Sagitta) contribute to their near-neutral buoyancy. Marked reductions in salinity exclude mahy marine invertebrates. In the Baltic, polychaetes, bivalve molluscs and decapod crustaceans are reduced from 193, ninety-two and sixty-four species in the Belt Sea (salinity S 10-30‰) to three, four and two in the Gulf of Finland (salinity S 5-9‰). The chelicerate Limulus can stand a wide range in salinity, a few insect larvae can tolerate concentrations of 200% sea water, while the branchiopod shrimp Artemia can stand crystallising brine (36-37% NaCl). Very few species can tolerate temperatures of 40°C. One such species is the polychaete Alvinella pompejana, a hydrothermal vent animal at East Pacific Ridge (to the W of S America). The harpacticid copepod Tigriopus living in evaporating rockpools has a lethal temperature of 42°C at a salinity of S 90‰, but at S 8‰ that temperature is 34°C. Lack of oxygen and presence of hydrogen sulphide limit the distribution of animals in certain areas. Most active animals have respiratory pigments in their principal body fluid. Burrowing invertebrates such as Arenicola and Lingula have respectively haemoglobin in the blood and haemerythrin in the coelomic fluid, with mean oxygen capacities of 6 ml O2 per 100 ml in each case, compared to 0·6 and 0·5 ml in sea water at 10° and 20°C.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akberali, H. B. & Trueman, E. R. 1985. Effects of environmental stress on marine bivalve molluscs. ADV MAR BIOL 22, 101198.CrossRefGoogle Scholar
Barcrott, J. & Barcroft, H. 1924. The blood pigment of Arenicola. PROC R SOC LONDON B96, 2842.Google Scholar
Barnes, H. 1954. Some tables for the ionic composition of sea water. J EXPER BIOL 31, 582588.CrossRefGoogle Scholar
Beadle, L. C. 1939. Regulation of the haemolymph in the saline mosquito larva Aedes detritus Edw. J EXP BIOL 16, 346362.CrossRefGoogle Scholar
Binns, R. 1969. The physiology of the antennal gland of Carcinus maenas (L.). II. Urine production rates. J EXP BIOL 51, 1116.CrossRefGoogle Scholar
Bonaventura, C. & Bonaventura, J. 1983. Respiratory pigments: structure and function. In Hochackka, P. W. (ed.) The Mollusca, Vol. 2, 150. New York: Academic Press.Google Scholar
Bone, Q., Brownlee, C., Bryan, G. W., Burt, G. R., Dando, G. R., Liddicoat, M. I., Pulsford, A. L. & Ryan, U. P. 1987. On the differences between the two ‘indicator’ species of chaetognaths, Sagitta setosa and S. elegans. J MAR BIOL ASSOC UK 67, 545560.CrossRefGoogle Scholar
Borden, M. A. 19301931. A study of the respiration and of the function of haemoglobin in Planorbis corneus and Arenicola marina. J MAR BIOL ASSOC UK 17, 709738.CrossRefGoogle Scholar
Bradley, T. J. 1985. The excretory system: structure and physiology. In Kerkut, G. A. & Gilbert, L. I. (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 4, 421465, Oxford: Pergamon.Google Scholar
Brock, T. D. 1985. Life at high temperatures. SCIENCE 230, 132138.CrossRefGoogle ScholarPubMed
Broekhuysen, G. J. 1936. On the development, growth and distribution of Carcinides maenas (L.) ARCH NEERL ZOOL 2, 257399.CrossRefGoogle Scholar
Capart, A. 1951. Thermobathynella adami gen. et sp. nov., Anaspidace du Congo Beige. INST R SCI NAT BIOL BULL 27(10), 14.Google Scholar
Coe, M. J. 1966. The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. ACTA TROP 23, 146177.Google Scholar
Croghan, P. C. 1958 a. The osmotic and ionic regulation of Artemia salina (L.). J EXP BIOL 35, 219233.CrossRefGoogle Scholar
Croghan, P. C. 1958 b. The mechanism of osmotic regulation in Artemia salina (L.): the physiology of the gut. J EXP BIOL 35, 243249.CrossRefGoogle Scholar
Denton, E. J. 1974. Buoyancy in Marine Animals. Oxford Biology Reader no. 54. London: Oxford University Press.Google Scholar
Denton, E. J., Shaw, T. I. & Gilpin-Brown, J. B. 1958. Bathyscaphoid squid. NATURE, LONDON 182, 18101811.CrossRefGoogle Scholar
Doherty, B. T. & Kester, D. R. 1974. Freezing point of sea water. J MAR RES 32, 285300.Google Scholar
Eliassen, E. 1956. The oxygen supply during ebb of Arenicola marina in the Danish Waddensea. UNIV BERGEN, ARBOK 1955, NATURVITENSK REKKE 12.Google Scholar
Fenchel, T. M. & Riedl, R. J. 1970. The sulfide system: a new biotic community underneath the oxidized layer of marine sandy bottoms. MAR BIOL 7, 255268.CrossRefGoogle Scholar
Fox, D. L. 1941. Changes in the tissue chloride of the Californian mussel in response to heterosmotic environments. BIOL BULL MAR BIOL LAB, WOODS HOLE 80, 111129.CrossRefGoogle Scholar
Fox, H. M. 19261929. The zoological results of the Cambridge expedition to the Suez canal, 1924. TRANS ZOOL SOC LONDON 22, 1873.CrossRefGoogle Scholar
Freadman, M. A. & Mangum, C. P. 1976. The function of hemoglobin in the arcid clam Noetia ponderosa—I Oxygenation in vitro and in vivo. COMP BIOCHEM PHYSIOL 53A, 173179.CrossRefGoogle Scholar
Grassle, J. L. 1986. The ecology of deep-sea hydrothermal vent communities. ADV MAR BIOL 23, 301362.CrossRefGoogle Scholar
Griesbach, 1891. Beiträge zur Histologie des Blutes. ARCH MIKROSKOP ANAT 37, 2299.CrossRefGoogle Scholar
Griffith, R. W., Umminger, B. L., Grant, B. F., Pang, P. K. T. & Pickford, G. E. 1974. Serum composition of the coelacanth, Latimeria chalumnae Smith. J EXP ZOOL 187, 87102.CrossRefGoogle ScholarPubMed
Gross, W. J. 1961. Osmotic tolerance and regulation in crabs from a hypersaline lagoon. BIOL BULL MAR BIOL LAB, WOODS HOLE 121, 290301.CrossRefGoogle Scholar
Hochachka, P. W. & Somero, G. N. 1984. Biochemical Adaptation. Princeton: Princeton University Press.CrossRefGoogle Scholar
Jones, J. D. 1955. Observations on the respiratory physiology and on the haemoglobin of the polychaete genus Nephthys, with special reference to N. hombergii (Aud. et M.-Edw.). J EXP BIOL 32, 110125.CrossRefGoogle Scholar
Kanwisher, J. W. 1955. Freezing intertidal animals. BIOL BULL MAR BIOL LAB, WOODS HOLE 109, 5663.CrossRefGoogle Scholar
Kawaguti, S. 1941. Hemerythrin found in the blood of Lingula. MEM FAC SCI AGRIC, TAIHOKU IMP UNIV FORMOSA, JAPAN 23, 9598.Google Scholar
Kinne, O. & Kinne, E. M. 1962. Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen relations. CANAD J ZOOL 40, 231253.CrossRefGoogle Scholar
Krogh, A. 1939. Osmotic Regulation in Aquatic animals. Cambridge: University Press.Google Scholar
Lankester, E. R. 18721873. A contribution to the knowledge of haemoglobin. PROC R SOC LONDON 21, 7081.Google Scholar
Leader, J. P. 1972. Osmoregulation in the larva of the marine caddis fly, Philanisus plebeius (Walk.) (Trichopterà). J EXP BIOL 57, 821838.CrossRefGoogle Scholar
Lockwood, A. P. M. 1961. The urine of Gammarus duebeni and G. pulex. J EXP BIOL 38, 647658.CrossRefGoogle Scholar
Mangum, C. P., Booth, C. E., DeFur, P. L., Heckel, N. A., Henry, R. P., Oglesby, L. C. & Polites, G. 1976. The ionic environment of hemocyanin in Limulus polyphemus. BIOL BULL MAR BIOL LAB, WOODS HOLE 150, 453467.CrossRefGoogle ScholarPubMed
Mantel, L. H. 1967. Asymmetry potentials, metabolism and sodium fluxes in gills of the blue crab Callinectes sapidus. COMP BIOCHEM PHYSIOL 20, 743753.CrossRefGoogle Scholar
Manwell, C. 1960. Oxygen equilibrium of brachiopod Lingula hemerythrin. SCIENCE 132, 550551.CrossRefGoogle ScholarPubMed
Manwell, C. 1963. The chemistry and biology of hemoglobin in some marine clams—I. Distribution of the pigment and properties of the oxygen equilibrium. COMP BIOCHEM PHYSIOL 8, 209218.CrossRefGoogle Scholar
Marshall, N. B. 1965. The Life of Fishes. London: Weidenfeld and Nicolson.Google Scholar
Nayar, J. K. & Sauerman, D. M. Jr., 1974. Osmoregulation in larvae of the salt-marsh mosquito, Aedes taeniorhynchus. ENTOMOL EXP APPL 17, 367380.CrossRefGoogle Scholar
Nicol, J. A. C. 1967. The Biology of Marine Animals. 2nd edn. London: Pitman & Sons.Google Scholar
Paine, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata. ECOL MONOGR 33, 187213.CrossRefGoogle Scholar
Potts, W. T. W. 1954. The energetics of osmotic regulation in brackish- and fresh-water animals. J EXP BIOL 31, 618630.CrossRefGoogle Scholar
Potts, W. T. W. 1959. The sodium fluxes in the muscle fibres of a marine and a freshwater lamellibranch. J EXP BIOL 36, 676689.CrossRefGoogle Scholar
Potts, W. T. W. 1976. Ion transport and osmoregulation in marine fish. In Davies, P. S. (ed.) Perspectives in Experimental Biology, Vol. 1, 6575. Oxford: Pergamon Press.Google Scholar
Prosser, C. L. 1973. Comparative Animal Physiology, 3rd edn. Philadelphia: W. B. Saunders.Google Scholar
Ranade, M. R. 1957. Observations on the resistance of Tigriopus fulvus (Fischer) to changes in temperature and salinity. J MAR BIOL ASSOC UK 36, 115119.CrossRefGoogle Scholar
Redfield, A. C. & Ingalls, E. N. 1933. The oxygen dissociation curves of some bloods containing hemocyanin. J CELL COMP PHYSIOL 3, 169202.CrossRefGoogle Scholar
Robertson, J. D. 1949. Ionic regulation in some marine invertebrates. J EXP BIOL 26, 182200.CrossRefGoogle ScholarPubMed
Robertson, J. D. 1953. Further studies on ionic regulation in invertebrates. J EXP BIOL 30, 277296.CrossRefGoogle Scholar
Robertson, J. D. 1954. The chemical composition of the blood of some aquatic chordates, including members of the Tunicata, Cyclostomata and Osteichthyes. J EXP BIOL 31, 424442.CrossRefGoogle Scholar
Robertson, J. D. 1960 a. Ionic regulation in the crab Carcinus maenas (L.) in relation to the moulting cycle. COMP BIOCHEM PHYSIOL 1, 183212.CrossRefGoogle Scholar
Robertson, J. D. 1960 b. Osmotic and ionic regulation. In Waterman, T. H. (ed.) The Physiology of Crustacea, Vol. 1, 317339. New York: Academic Press.Google Scholar
Robertson, J. D. 1970. Osmotic and ionic regulation in the horseshoe crab Limulus polyphemus Linnaeus. BIOL BULL MAR BIOL LAB, WOODS HOLE 138, 157183.CrossRefGoogle Scholar
Robertson, J. D. 1975. Osmotic constituents of the blood plasma and parietal muscle of Squalus acanthias L. BIOL BULL MAR BIOL LAB, WOODS HOLE 148, 303319.CrossRefGoogle Scholar
Robertson, J. D. 1976. Chemical composition of the body fluids and muscle of the hagfish Myxine glutinosa and the rabbit-fish Chimaera monstrosa. J ZOOL, LONDON 178, 261277.CrossRefGoogle Scholar
Robertson, J. D. 1984. The composition of blood plasma and parietal muscle of Oslo Fjord eels [Anguilla anguilla (L.)] and the river lamprey [Lampetra fluviatilis (L.)]. COMP BIOCHEM PHYSIOL 77A, 431439.CrossRefGoogle Scholar
Robinson, R. A. 1954. The vapour pressure and osmotic equivalence of sea water. J MAR BIOL ASSOC UK 33, 449455.CrossRefGoogle Scholar
Schlieper, C. 1929. Über die Einwirkung niederer Salzkonz-entrationem auf marine Organismen. Z FÜR VGL PHYSIOL 9, 478514.CrossRefGoogle Scholar
Segerstråle, S. G. 1957. Baltic Sea. In Hedgpeth, J. W. (ed.) Treatise on Marine Ecology and Paleoecology Vol. 1, Chapter 24, 751800. (The Geological Society of America Memoir 67).Google Scholar
Shaw, J. 1961. Studies on ionic regulation in Carcinus maenas (L.). I. Sodium balance. J EXP BIOL 38, 135152.CrossRefGoogle Scholar
Smith, P. G. 1969. The ionic relations of Artemia salina (L.). 1. Measurements of electrical potential difference and resistance. J EXP BIOL 51, 727738.CrossRefGoogle Scholar
Størmer, L. 1952. Phylogeny and taxonomy of fossil horseshoe crabs. J PALEONTOL 26, 630640.Google Scholar
Sutcliffe, D. W. 1960. Osmotic regulation in the larvae of some euryhaline Diptera. NATURE, LONDON 187, 331332.CrossRefGoogle ScholarPubMed
Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. 1942. The Oceans, Their Physics, Chemistry and General Biology. New York: Prentice-Hall, Inc.Google Scholar
Thayer, C. W. & Sreele-Petroviè, H. M. 1975. Burrowing of the lingulid brachiopod Glottidia pyramidata: its ecologic and paleoecologic significance. LETHAIA 8, 209221.CrossRefGoogle Scholar
Theede, H. 19681969. Einige neue Aspekte bei der Osmoregulation von Carcinus maenas. (Some new aspects in the osmoregulation of Carcinus maenas). MAR BIOL 2, 114120.CrossRefGoogle Scholar
Theede, H., Ponat, A., Hiroka, K. & Schlieper, C. 19681969. Studies on the resistance of marine bottom invertebrates to oxygen deficiency and hydrogen sulphide. MAR BIOL 2, 325337.CrossRefGoogle Scholar
Toulmand, A. 1973. Tide-related changes of blood respiratory variables in the lugworm Arenicola marina (L.). RESP PHYSIOL 19, 130144.CrossRefGoogle Scholar
Trueman, E. R. 1975. The Locomotion of Soft-Bodied Animals. London: Arnold.Google Scholar
Trueman, E. R. & Wong, T. M. 1987. The role of the coelom as a hydrostatic skeleton in lingulid brachiopods. J ZOOL SOC LONDON 213, 221232.CrossRefGoogle Scholar
Weast, R. C. 1986. CRC Handbook of Chemistry and Physics, 67th edn., 19861987. Boca Raton: CRC Press.Google Scholar
Webb, D. A. 1940. Ionic regulation in Carcinus maenas. PROC R SOC LONDON B129, 107136.Google Scholar
Weber, R. E. & Pauptit, E. 1972. Molecular and functional heterogeneity in myoglobin from the polychaete Arenicola marina L. ARCH BIOCHEM BIOPHYS 148, 322324.CrossRefGoogle ScholarPubMed
Wolvekamp, H. P. & Vreede, M. C. 19401941. On the gas binding properties of the blood of the lugworm (Arenicola marina L.). ARCH NEERL PHYSIOL L'HOMME ANIM 15, 265276.Google Scholar
Zanders, I. P. 1980. Regulation of blood ions in Carcinus maenas (L.). COMP BIOCHEM PHYSIOL 65A, 97108.CrossRefGoogle Scholar