Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:52:56.309Z Has data issue: false hasContentIssue false

Physiological characteristics of land plants in relation to environment through time

Published online by Cambridge University Press:  03 November 2011

Robert A. Spicer
Affiliation:
Department of Life Sciences, Goldsmiths' College, Creek Road, London SE8 3BU, U.K.

Abstract

The spatially fixed sporophyte body of vascular land plants has to be adapted to both atmospheric and substrate environments. Potentially almost all stages in the life cycle of a land plant are fossilisable and the physiological adaptations to these environments are reflected in the morphology, anatomy, and chemistry of the plant. Although solutions to the plant's physiological problems have been refined through evolution, the basic responses to fundamental environmental parameters such as temperature, water availability, nutrient supply, gas exchange and light, evolved early in land plant history. These taxon-independent solutions can be used qualitatively, and sometimes quantitatively, to track changes in atmospheric and edaphic conditions throughout much of the Phanerozoic. Increase in body size and height in Middle and Late Devonian times was coupled with intense demand for light, nutrients and water supply and with elaborations of vascular systems, photosynthetic surfaces, organ abscission and ‘root’ organisation. During the Carboniferous extreme adaptations to substrate waterlogging evolved. Mycorrhizal associations and “phi” layers in Triassic roots represent early aspects of modern root physiology. From the mid-Cretaceous, angiosperms exhibit leaf architectural characteristics which in modern plants relate qualitatively to moisture and light, and quantitatively to temperature, while vessel size and distribution in trunk wood is related to water stress and susceptibility to freezing. The relative proportion of plants utilising C3, CAM, and C4 photosynthetic pathways varies with environment. Isotopic analysis of plant fossils may demonstrate changing relative frequencies of photosynthetic pathways through time in relation to atmospheric composition and temperature.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and palaeoecology. REV PALAEOBOT PALYNOL 37, 7198.CrossRefGoogle Scholar
Baas, P. 1982. Systematic, phylogenetic, and ecological wood anatomy—history and perspectives. In Baas, P. (ed.) New Perspectives in Wood Anatomy, 2358. The Hague: Junk.CrossRefGoogle Scholar
Bailey, I. W. & Sinnot, E. W. 1915. A botanical index of Cretaceous and Tertiary climates. SCIENCE 41, 831834.CrossRefGoogle ScholarPubMed
Bannan, M. W. 1965. The length, tangential diameter and length width ratio of conifer tracheids. CAN J BOT 43, 967984.CrossRefGoogle Scholar
Bazzaz, F. A. 1980. Consequence of elevated CO2 concentrations for Plant Photosynthesis, Growth and Competition. ABSTR 5TH INT CONGR PHOTOSYNTHESIS SEPT 7-13, Halkidiki, Greece.Google Scholar
Beck, C. B. 1962. Reconstruction of Archaeopteris and Further Consideration of its Phylogenetic Position. AM J BOT 49, 373–82.CrossRefGoogle Scholar
Beerbower, R. 1985. Early development of continental ecosystems. In Tiffney, B. M. (ed.) Geological factors and the evolution of plants, 4791. New Haven CT: Yale University Press.Google Scholar
Berner, R. A. & Landis, G. P. 1988. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air. SCIENCE 239, 14061409.CrossRefGoogle ScholarPubMed
Bjorkman, O., Gauhl, E. & Nobs, M. A. 1969. Comparative studies of Atriplex species with and without carboxylation photosynthesis and their first-generation hybrid. YEARB CARNEGIE INST WASHINGTON 68, 620–33.Google Scholar
Bocherens, H., Fizet, M., Cuif, J., Jaeger, J., Michard, J. & Mariotti, A. 1988. Premières mesures d'abondances isotopiques naturelles en 13C et 15N de la matière organique fossile de dinosaure. Application à l'étude du régime alimentaire du genre Anatosaurus (Ornitischia, Hadrosauridae). CR ACAD SCI PARIS 306, 15211525.Google Scholar
Bolhar-Nordenkampf, H. R. 1980. Changes in photosynthetic efficiency. In The Global Carbon Cycle, SCOPE 13, 403–57. New York: John Wiley.Google Scholar
Boulter, M. C., Spicer, R. A. & Thomas, B. A. 1988. Patterns of plant extinction from some palaeobotanical evidence. In Larwood, G. P. (ed.) Extinction and Survival in the Fossil Record, Systematics Association Special Volume 34, 136. Oxford: Clarendon Press.Google Scholar
Brack-Haynes, S. D. 1978. On the megagametophytes of two lepidodendracean cones. BOT GAZ 139, 140–46.CrossRefGoogle Scholar
Braun, H. J. 1984. The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. INT ASSOC WOOD ANAT BULL NS 5, 275294.Google Scholar
Carlquist, S. 1975. Ecological Strategies of Xylem Evolution. Berkeley: University of California Press.CrossRefGoogle Scholar
Carlquist, S. 1978. Ecological factors in wood evolution: a floristic approach. AM J BOT 64, 887896.CrossRefGoogle Scholar
Carlquist, S. 1984. Vessel grouping in dicotylodon wood: significance and relationship of imperforate tracheary elements. ALISO 10, 505525.CrossRefGoogle Scholar
Carlquist, S. 1985. Vasicentric tracheids as drought survival mechanism in the woody flora of southern California and similar regions; review of vasicentric tracheids. ALISO 11, 3768.Google Scholar
Chaloner, W. G., Mensah, M. K. & Crane, M. D. 1974. Non-vascular land plants from the Devonian of Ghana. PALAEONTOLOGY 17, 925–47.Google Scholar
Creber, G. T. & Chaloner, W. G. 1984. Climatic indications from growth rings in fossil wood. In Brenchley, P. J. (ed.) Fossils and Climate, 4974. New York: John Wiley.Google Scholar
Daghlian, C. P. & Person, C. P. 1977. The cuticular anatomy of Frenelopsis varians from the Lower Cretaceous of central Texas. AM J BOT 64, 564569.CrossRefGoogle Scholar
Dolph, G. E. & Dilcher, D. L., 1980. Variation in leaf size with respect to climate in the tropics of the western hemisphere. BULL TORREY BOT CLUB 107, 154162.CrossRefGoogle Scholar
Doran, J. B. 1980. A new species of Psilophyton from the Lower Devonian of northern New Brunswick. CAN J BOT 58, 2241–62.CrossRefGoogle Scholar
Drew, M. C. 1987. Function of root tissues in nutrient and water transport. In Gregory, P. J., Lake, J. V., & Rose, D. A. (eds) Root Development and Function. Cambridge: Cambridge University Press.Google Scholar
Edwards, D. 1979. The early history of vascular land plants based on late Silurian and early Devonian Floras of the British Isles. In The Caledonides of the British Isles. Reviewed, 405410. London: Geological Society.Google Scholar
Edwards, D. in press. Silurian and Devonian Palaeobotany; Problems, Progress and Potential. In Taylor, T. N. & Taylor, E. L. (eds) Antarctic Paleobotany and its role in the reconstruction of Gondwana. Berlin: Springer-Verlag.Google Scholar
Edwards, D. & Benedetto, J. L. 1985. Two new species of herbaceous lycopods from the Devonian of Venezuela with comments on their taphonomy. PALAEONTOLOGY 18, 559618.Google Scholar
Edwards, D. S. 1980. Evidence for the sporophytic status of the Lower Devonian plant Rhynia gwynne-vaughanii Kidston and Lang. REV PALAEOBOT PALYNOL 29, 177–88.CrossRefGoogle Scholar
Eggert, D. A. 1961. The ontogeny of the Carboniferous arborescent Lycopsida. PALAEONTOGRAPHICA B108, 4392.Google Scholar
Epstein, E. 1972. Mineral Nutrition in Plants: Principles and Perspectives. New York: John Wiley.Google Scholar
Ferguson, D. K. 1985. The origin of leaf assemblages—new light on an old problem. REV PALAEOBOT PALYNOL 46, 117–88.CrossRefGoogle Scholar
Francis, J. E. 1984. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 48, 285307.CrossRefGoogle Scholar
Francis, J. E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. PALAEONTOLOGY 29, 665684.Google Scholar
Fritts, H. C. 1976. Tree Rings and Climate. New York: Academic Press.Google Scholar
Givnish, T. 1979. On the adaptive significance of leaf form. In Solbrig, O. T., Jain, S., Johnson, G. B. & Raven, P. H. (eds) Topics in Plant Population Biology, 375407. New York: Columbia University Press.Google Scholar
Givnish, T. & Vermeij, G. J. 1976. Sizes and shapes of liane leaves. AM NAT 110, 743746.CrossRefGoogle Scholar
Harberlandt, G. 1914. Physiological Plant Anatomy. London: MacMillan.Google Scholar
Holmes, C. W., Flores, R. M. & Pocknall, D. T. 1987. Carbon Isotopes in Powder River Basin Tertiary Coals: A Measure of the Evolution of Peat Swamps. GSA ABSTR PROG 19, 706.Google Scholar
Huber, B. 1956. Die Gafassleitung. In Ruhland, W. (ed.) Handbuch der Pflanzenphysiologie 3. Berlin: Springer Verlag.Google Scholar
Jefferson, T. H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. PALAEONTOLOGY 25, 681708.Google Scholar
Kelly, A. P. 1950. Mycotrophy in Plants. Lectures on the Biology of Mycorrhizae and Related Structures. Waltham, Massachusetts: Chronica Botanica Co.CrossRefGoogle Scholar
Knoll, A. H., Grant, S. W. F. & Tsao, J. W. 1986. The early evolution of land plants. In Broadhead, T. W. (ed.) Land Plants, 4563. University of Tennessee Studies in Geology 15.Google Scholar
Knoll, A. H. & Niklas, K. J. 1987. Adaptation, plant evolution, and the fossil record. REV PALAEOBOT PALYNOL 50, 127149.CrossRefGoogle ScholarPubMed
Krassilov, V. A. 1978. Araucariaceae as indicators of climate and environment. REV PALAEOBOT PALYNOL 26, 113124.CrossRefGoogle Scholar
Lele, K. M. & Walton, J. 1962. Contributions to the knowledge of Zosterophyllum myretonianum Penhallow from the Lower Old Red Sandstone of Angus. TRANS R SOC EDINBURGH 64, 469–75.Google Scholar
Lorimer, G. H. & Andrews, J. T. 1973. Plant photorespiration—an inevitable consequence of the existence of atmospheric oxygen. NATURE 243, 359–60.CrossRefGoogle Scholar
Meyen, S. V. 1973. Plant morphology and its nomothetical aspects. BOT REV 39, 205–60.CrossRefGoogle Scholar
Millay, M. A., Taylor, T. N. & Taylor, E. L. 1987. Phi thickenings in fossil seed plants from Antarctica. IAWA BULLETIN NS 8, 191201.CrossRefGoogle Scholar
Moore, P. D. 1981. The varied ways plants tap the sun. NEW SCIENTIST 89, 394–7.Google Scholar
Moore, P. D. 1983a. Plants and the palaeoatmosphere. J GEOL SOC LONDON 140, 1325.CrossRefGoogle Scholar
Moore, P. D. 1983b. Photosynthetic pathways in aquatic plants. NATURE 304, 310.CrossRefGoogle Scholar
Moore, P. D. 1989. Some ecological implications of Palaeoatmospheric variations. J GEOL SOC LONDON 146, 183186.CrossRefGoogle Scholar
Nambudiri, E. M. V., Tidwell, W. D., Smith, B. N. & Hebbert, N. P. 1978. A C4 plant from the Pliocene. NATURE 276, 816–7.CrossRefGoogle Scholar
Niklas, K. J. 1985. The evolution of tracheid diameter in early vascular plants and its implications on the hydraulic conductance of the primary vascular strand. EVOLUTION 39, 11101122.CrossRefGoogle Scholar
Parrish, J. T. & Spicer, R. A. 1988. Middle Cretaceous wood from the Nanushuk Group, central North Slope, Alaska. PALAEONTOLOGY 31, 1934.Google Scholar
Pirozynski, K. A. & Malloch, D. W. 1975. The origin of land plants: a matter of mycotrophism. BIOSYSTEMS 6, 153164.CrossRefGoogle ScholarPubMed
Pratt, L. M., Phillips, T. L. & Dennison, J. M. 1978. Evidence of non-vascular land plants from the Early Silurian (Llandoverian) of Virginia, U.S.A. REV PALAEOBOT PALYNOL 25, 121–49.CrossRefGoogle Scholar
Raven, J. A. & Sprent, J. I. 1989. Phototrophy, diazotrophy and palaeoatmospheres: biological catalysis and the H, C, N and O Cycles. J GEOL SOC LONDON 146, 161170.CrossRefGoogle Scholar
Richards, P. W. 1952. The Tropical Rain Forest. Cambridge: Cambridge University Press.Google Scholar
Roth, I. 1984. Stratification of Tropical Forests as Seen in Leaf Structure. The Hague: Junk.CrossRefGoogle Scholar
Rothwell, G. W. 1977. Evidence for a pollen-drop mechanism in Palaeozoic gymnosperms. SCIENCE 175, 772–74.CrossRefGoogle Scholar
Shukla, J. & Mintz, Y. 1982. Influence of land-surface evapotranspiration on the Earth's climate. SCIENCE 215, 14981500.CrossRefGoogle ScholarPubMed
Smith, B. N. & Robbins, M. J. 1974. Evolution of C4 photosynthesis. An assessment based on 13C/12C ratios and Kranz anatomy. PROC 3RD INT CONGR PHOTO-SYNTHESIS 2, 1579–87.Google Scholar
Spicer, R. A. 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Berkshire, England. US GEOL SURV PROF PAP 1143, 177.Google Scholar
Spicer, R. A. in press a. Reconstructing high latitude Cretaceous vegetation and climate: Arctic and Antarctic compared. In Taylor, T. N. & Taylor, E. L. (eds) Antarctic Paleobiology and its role in the Reconstruction of Gondwana. Berlin: Springer-Verlag.Google Scholar
Spicer, R. A. in press b. The formation and interpretation of plant fossil assemblages. In Callow, J. A. (ed.) Advances in Botanical Research 16. London: Academic Press.Google Scholar
Spicer, R. A., Yao, Jiping & Horrell, M. A. 1988. Early Cretaceous phytogeography and climate of China based on numerical analysis of plant megafossils. (Abstract) III IOP CONFERENCE, MELBOURNE AUSTRALIA PUBL 1, 26.Google Scholar
Spicer, R. A. & Parrish, J. T. 1986. Palaeobotanical evidence for cool north polar climates in the mid Cretaceous (Albian-Cenomanian). GEOLOGY 14, 703706.2.0.CO;2>CrossRefGoogle Scholar
Stubblefield, S. P., Taylor, T. N. & Trappe, J. M. 1987. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. AM J BOT 74, 19041911.CrossRefGoogle Scholar
Stubblefield, S. P. & Taylor, T. N. 1988. Tansley Review No. 12 Recent Advances in Palaeomycology. NEW PHYTOL 108, 325.CrossRefGoogle Scholar
Thomas, B. A. & Spicer, R. A. 1987. Evolution and Palaeobiology of Land Plants, 1307. London: Croom Helm.Google Scholar
Upchurch, G. R. Jr. & Doyle, J. A. 1981. Paleoecology of the Conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In Romans, R. C., (ed.) Geobotany II, 167202. New York: Plenum Press.CrossRefGoogle Scholar
Webb, L. J. 1959. A physiognomic classification of Australian rain forests. J ECOL 47, 551570.CrossRefGoogle Scholar
Whitehead, F. H. 1962. Experimental studies of the effect of wind on plant growth. II. Helianthus annuus. NEW PHYTOL 61, 5962.CrossRefGoogle Scholar
Whitehead, F. H. 1963a. The effects of exposure on growth and development. In Rutter, A. J. & Whitehead, F. H. (eds.) The Water Relations of Plants, 235242. Oxford: Oxford University Press.Google Scholar
Whitehead, F. H. 1963b. Experimental studies of the effects of wind on plant growth and anatomy. IV. Growth substances and adaptive anatomical and morphological changes. NEW PHYTOL 62, 8690.CrossRefGoogle Scholar
Wolfe, J. A. 1971. Tertiary climatic fluctuations and methods of analysis of tertiary floras. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 9, 2757.CrossRefGoogle Scholar
Wolfe, J. A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and their relation to forests of other regions of the northern hemisphere and Australasia. US GEOL SURV PROF PAP 1106, 136.Google Scholar
Wolfe, J. A. & Upchurch, G. R. Jr. 1986. Vegetation, climatic, and floral changes across the Cretaceous-Tertiary boundary. NATURE 324, 148152.CrossRefGoogle Scholar
Wolfe, J. A. & Upchurch, G. R. Jr. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 61, 3377.CrossRefGoogle Scholar
Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. NATURE 237, 617618.CrossRefGoogle Scholar
Zdebska, D. 1982. A new Zosterophyll from the Lower Devonian of Poland. PALAEONTOLOGY 25, 247–63.Google Scholar
Zimmerman, M. H. 1964. Sap movements in trees. BIORHEOLOGY 2, 1527.CrossRefGoogle Scholar
Zimmerman, M. H. 1983. Xylem Structure and the Ascent of Sap. Berlin: Springer-Verlag.CrossRefGoogle Scholar