Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T11:50:41.427Z Has data issue: false hasContentIssue false

Petrogenesis of a two-mica ignimbrite suite: the Macusani Volcanics, SE Peru

Published online by Cambridge University Press:  03 November 2011

Michel Pichavant
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, BP 20, 54501, Vandoeuvre-lès-Nancy, France.
Jean-Marc Montel
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, BP 20, 54501, Vandoeuvre-lès-Nancy, France.

Abstract

The Miocene-Pliocene Macusani ash-flow tuffs and glasses from SE Peru are a rare example of two-mica felsic peraluminous volcanic rocks. They outcrop in three separate tectonic basins of the Cordillera Oriental in the Central Andes. In the Macusani field, the rocks are characterised by andalusite and muscovite phenocrysts. Compositions are both very felsic and peraluminous, similar to two-mica granites. Field relations, age differences and isotopic heterogeneities suggest that several distinct magma batches were involved. Two separate magmatic stages are recognised: (1) partial melting and evolution at or near the source region, and (2) shallow-level crystallisation and eruption. Magma genesis involved partial melting of metapelitic materials, with internally controlled. High heat flux, rapid heating, elevated temperatures and F-rich compositions were essential for the production of these mobile, H2O-undersaturated magmas. Chemical variations between the erupted products can be attributed to different degrees either of partial melting in somewhat variable source materials and (or) of fractional crystallisation at shallow levels. We discuss some important differences between the magmatic evolution of the Macusani Volcanics and of Hercynian and Himalayan two-mica granites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzi, A. A. 1978. Fusion kinetics, water pressure, water diffusion and electrical conductivity in melting rocks, interrelated. J PETROL 19, 153169.CrossRefGoogle Scholar
Barnes, A. E., Edwards, G., McLaughlin, W. A., Friedman, I. & Joensuu, O. 1970. Macusanite occurrence, age and composition, Macusani, Peru. BULL GEOL SOC AM 81, 1539–46.CrossRefGoogle Scholar
Benard, F., Moutou, P. & Pichavant, M. 1985. Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J GEOL 93, 271–91.CrossRefGoogle Scholar
Bhattacharya, A. & Sen, S. K. 1986. Granulite metamorphism, fluid buffering and dehydration melting in the Madras charnockites and metapelites. J PETROL 27, 1119–41.CrossRefGoogle Scholar
Blake, S. 1984. Volatile oversaturation during the eruption of silicic magma chambers as an eruption trigger. J GEOPHYS RES 89, 8237–44.CrossRefGoogle Scholar
Bohlen, S. R., Dollase, W. A. & Wall, V. J. 1986. Calibration and application of spinel equilibria in the system FeO-Al2O3-SiO2. J PETROL 27, 1143–56.CrossRefGoogle Scholar
Brearley, A. J. 1987a. A natural example of the disequilibrium breakdown of biotite at high temperature: TEM observations and comparison with experimental kinetic data. MINERAL MAG 51, 93106.CrossRefGoogle Scholar
Brearley, A. J. 1987b. An experimental and kinetic study of the breakdown of aluminous biotite at 800°C: reaction microstructures and mineral chemistry. BULL MINERAL 110, 513–32.Google Scholar
Brown, G. C. & Fyfe, W. S. 1970. Production of granitic melts during ultrametamorphism. CONTRIB MINERAL PETROL 28, 310–8.CrossRefGoogle Scholar
Burnham, C. W. 1979. Magmas and hydrothermal fluids. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, 71136. New York: John Wiley & Sons.Google Scholar
Burnol, L. 1978. Different types of leucogranites and classification of the types of mineralization associated with acid magmatism in the North-western part of the French Massif Central. In Stemprok, M., Burnol, L. & Tischendorf, G. (eds) Metallization associated with acid magmatism, 191204. Praha: Ustredni Ustav Geologicky.Google Scholar
Charoy, B. 1986. The genesis of the Cornubian batholith (south-west England): the example of the Carnmenellis pluton. J PETROL 27, 571604.CrossRefGoogle Scholar
Christiansen, E. H., Burt, D. M., Sheridan, M. F. & Wilson, R. T. 1983. The petrogenesis of topaz rhyolites from the Western United States. CONTRIB MINERAL PETROL 83, 1630.CrossRefGoogle Scholar
Christiansen, E. H., Bikun, J. V., Sheridan, M. F. & Burt, D. M. 1984. Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. AM MINERAL 69, 223–36.Google Scholar
Clark, A. H., Kontak, D. J. & Farrar, E. 1984. A comparative study of the metallogenetic and geochronological relationships in the northern part of the Central Andean tin belt, SE Peru and NW Bolivia. Proceedings of VI Quadrennial I.A.G.O.D. Symposium, 269–79. Stuttgart: Schweizerbart.Google Scholar
Clemens, J. D., Holloway, J. R. & White, A. J. R. 1986. Origin of an A-type granite: experimental constraints. AM MINERAL 71, 317–24.Google Scholar
Clemens, J. D. & Vielzeuf, D. 1987. Constraints on melting and magma production in the crust. EARTH PLANET SCI LETT 86, 287306.CrossRefGoogle Scholar
Clemens, J. D. & Wall, V. J. 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. CAN MINERAL 19, 111–31.Google Scholar
Clemens, J. D. & Wall, V. J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. CONTRIB MINERAL PETROL 88, 354–71.CrossRefGoogle Scholar
Dingwell, D. B., Scarfe, C. M. & Cronin, D. J. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: implications for phonolites, trachytes and rhyolites. AM MINERAL 70, 8087.Google Scholar
Dupuy, C. 1970. Contribution à l'étude des fractionnements géochimiques des alcalins, des alcalino-terreux et du gallium au cours des processus magmatiques. Example: les roches intrusives et effusives de Toscane et du Latium Septentrional (Italie). Thèse Sci., Montpellier University.Google Scholar
France-Lanord, C. & Le, Fort P. 1988. Crustal melting and granite genesis during the Himalayan collision orogenesis. TRANS R SOC EDINBURGH EARTH SCI 79, 183195.Google Scholar
Francis, G. H. 1959. Ignimbritos (Sillar) de la Cordillera oriental del sur del Peru. INST NAC DE INVEST Y FOMENT MINERO 21, 1332.Google Scholar
French, B. M., Jezek, P. A. & Appleman, D. E. 1978. Virgilite: a new lithium aluminium silicate mineral from the Macusani glass, Peru. AM MINERAL 63, 461–5.Google Scholar
Grapes, R. H. 1986. Melting and thermal reconstitution of pelitic xenoliths, Wehr volcano, East Eifel, West Germany. J PETROL 27, 343–96.CrossRefGoogle Scholar
Green, T. H. 1976. Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition. GEOLOGY 4, 85–8.2.0.CO;2>CrossRefGoogle Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A. & Wildeman, T. R. 1968. Relative and absolute terrestrial abundances of the rare earths. In Ahrens, L. H. (ed.) Origin and distribution of the elements, 889912. Oxford: Pergamon Press.CrossRefGoogle Scholar
Hildreth, W. 1979. The Bishop tuff: evidence for the origin of compositional zonation in silicic magma chambers. GEOL SOC AM SPEC PAP 180, 4376.Google Scholar
Hildreth, W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J GEOPHYS RES 86, 10153–92.CrossRefGoogle Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminium silicate phase diagram. AM J SCI 271, 97131.CrossRefGoogle Scholar
Koeppen, R. P., Smith, R. L., Kunk, M. J., Flores, M., Luedke, R. G. & Sutter, J. F. 1987. The Moroccocala volcanics: highly peraluminous rhyolite ash-flow magmatism in the Cordillera Oriental, Bolivia. GEOL SOC AM ABSTR PROG 19, 731.Google Scholar
Kontak, D. J., Clark, A. H. & Farrar, E. 1984. The magmatic evolution of the Cordillera Oriental of SE Peru: crustal versus mantle components. In Harmon, R. S. & Barrerio, B. A. (eds) Andean magmatism: chemical and isotopic constraints, 203–19. Nantwich: Shiva.CrossRefGoogle Scholar
Lacroix, A. 1893. Les enclaves des roches volcaniques. Macon: Protat Frères.Google Scholar
Lameyre, J. 1973. Les marques de l'eau dans les leucogranites du Massif Central Français. BULL SOC GEOL FR 15, 288–95.CrossRefGoogle Scholar
La Roche H., de, Stussi, J. M. & Chauris, L. 1980. Les granites à deux micas hercyniens Français. Essais de cartographie et de correlations geochimiques appuyés sur une banque de données. Implications péitrologiques et métallogéniques. SCI DE LA TERRE 24, 5121.Google Scholar
Laubacher, G. 1978. Estudio geologico de la region norte du Lago Titicaca. INST GEOL MINER BOL 5, 1120.Google Scholar
Le, Fort P. 1981. Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. J GEOPHYS RES 86, 10545–68.Google Scholar
Le, Fort P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N & Vidal, P. 1987. Crustal generation of the Himalayan leucogranites. TECTONOPHYSICS 134, 3957Google Scholar
Linck, G. 1926. Ein neuer Kristallführender Tektit von Paucartambo in Peru. CHEM ERDE 2, 157–74.Google Scholar
Manning, D. A. C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kbar. CONTRIB MINERAL PETROL 76, 206–15.CrossRefGoogle Scholar
Manning, D. A. C. & Pichavant, M. 1988. Volatiles and their bearing on the behaviour of metals in granitic systems. CAN INST MIN METALL BULL (in press).Google Scholar
Maury, R. C. & Bizouard, H. 1974. Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. CONTRIB MINERAL PETROL 48, 275–86.CrossRefGoogle Scholar
Miller, C. F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources?. J GEOL 93, 673–89.CrossRefGoogle Scholar
Mittlefehldt, D. W. & Miller, C. F. 1983. Geochemistry of the Sweetwater Wash Pluton, California: implications for “anomalous” trace element behavior during differentiation of felsic magmas. GEOCHIM COSMOCHIM ACTA 47, 109–24.CrossRefGoogle Scholar
Montel, J. M. 1986. Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800°C, 2 kbar under H2O-saturated conditions. GEOLOGY 14, 659–62.2.0.CO;2>CrossRefGoogle Scholar
Montel, J. M. 1987. Comportement des terres rares dans les magmas granitiques: modélisation et approche expérimental du rôle de la monazite. Thèse Sci., Nancy University.Google Scholar
Montel, J. M., Weber, C., Barbey, P. & Pichavant, M. 1986. Thermobarometrie du domaine anatectique du Velay (Massif Central, France) et conditions de genèse des granites tardi-migmatitiques. C R ACAD SCI PARIS 302, 647–52.Google Scholar
Munksgaard, N. C. 1984. High δ O18 and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing neogene volcanics from SE Spain. CONTRIB MINERAL PETROL 87, 351–8.CrossRefGoogle Scholar
Munoz, J. L. & Ludington, S. 1977. Fluorine-hydroxyl exchange in synthetic muscovite and its applications to muscovite-biotite assemblages. AM MINERAL 62, 304–8.Google Scholar
Nicholls, J., Carmichael, I. S. E. & Stormer, J. C. Jr. 1971. Silica activity and Ptotal in igneous rocks. CONTRIB MINERAL PETROL 33, 120.CrossRefGoogle Scholar
Noble, D. C., Vogel, T. A., Peterson, P. S., Landis, G. P., Grant, N. K., Jezek, P. & McKee, E. H. 1984. Rare elementenriched, S-type ash-flow tuffs containing phenocrysts of muscovite, andalusite, and sillimanite, southeastern Peru. GEOLOGY 12, 35–9.2.0.CO;2>CrossRefGoogle Scholar
Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. AM MINERAL 72, 1056–70.Google Scholar
Pichavant, M., Valencia, Herrera J., Boulmier, S., Briqueu, L., Joron, J. L., Juteau, M., Marin, L., Michard, A., Sheppard, S. M. F., Treuil, M. & Vernet, M. 1987a. The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In Mysen, B. O. (ed.) Magmatic Processes: Physicochemical Principles, 359–73. University Park: The Geochemical Society.Google Scholar
Pichavant, M., Boher, M., Stenger, J. F., Aïssa, M. & Charoy, B. 1987b. Relations de phases des granites de Beauvoir entre 1 et 3 kbar en conditions de saturation en H2O. GEOL DE LA FRANCE 2–3, 7786.Google Scholar
Pichavant, M., Kontak, D. J., Valencia, Herrara J. & Clark, A. H. 1988a. The Miocene-Pliocene Macusani Volcanics, SE Peru I. Mineralogy and magmatic evolution of a two-mica ignimbrite suite. CONTRIB MINERAL PETROL (in press).CrossRefGoogle Scholar
Pichavant, M., Kontak, D. J., Briqueu, L., Valencia, Herrera J. & Clark, A. H. 1988b. The Macusani Volcanics, SE Peru. II Geochemistry and origin of a felsic peraluminous magma. CONTRIB MINERAL PETROL (in press).Google Scholar
Pichavant, M. & Manning, D. A. C. 1984. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. PHYS EARTH PLANET INT 35, 3150.CrossRefGoogle Scholar
Powers, R. E. & Bohlen, S. R. 1985. The role of synmetamorphic igneous rocks in the metamorphism and partial melting of metasediments, northwest Adirondacks. CONTRIB MINERAL PETROL 90, 401–09.CrossRefGoogle Scholar
Price, R. C. 1983. Geochemistry of a peraluminous granitoid suite from north-eastern Victoria, south-eastern Australia. GEOCHIM COSMOCHIM ACTA 47, 3142.CrossRefGoogle Scholar
Raimbault, L. & Azencott, C. 1987. Géochimie des éléments majeurs et traces du granite à métaux rares de Beauvoir (sondage GPF, Echassières). GEOL DE LA FRANCE 2–3, 189–98.Google Scholar
Robie, R. A., Hemingway, B. S. & Fischer, J. R. 1978. Thermodynamic properties of minerals and related substances at 289·15K and 1 bar (105 pascals) pressure and at higher temperatures. US GEOL SURV BULL 1452.Google Scholar
Taylor, B. E., Eichelberger, J. C. & Westrich, H. R. 1983. Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. NATURE 306, 541–5.CrossRefGoogle Scholar
Taylor, H. P. & Epstein, S. 1962. Oxygen isotope studies on the origin of tektites,. J GEOPHYS RES 67, 4485–90.CrossRefGoogle Scholar
Tischendorf, G. 1977. Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. In Stemprok, M., Burnol, L. & Tischendorf, G. (eds) Metallization associated with acid magmatism, 4198, Praha: Ustredni Ustav Geologicky.Google Scholar
Valencia, Herrera J., Pichavant, M. & Esteyries, C. 1984. Le volcanisme ignimbritique peralumineux plio-quaternaire de la région de Macusani, Pérou. C R ACAD SCI PARIS 298, 7782.Google Scholar
Vielzeuf, D. & Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. CONTRIB MINERAL PETROL 98, 257–76.CrossRefGoogle Scholar
Wall, V. J., Clemens, J. D. & Clarke, D. B. 1987. Models for granitoid evolution and source rock compositions. J GEOL 95, 731–49.CrossRefGoogle Scholar
Weber, C. & Pichavant, M. 1986. Plagioclase-liquid phase relations in the system Qz-Or-Ab-An-H2O at 3 kbar: toward a resolution of experimental difficulties. EOS 67, 408.Google Scholar
White, A. J. R. & Chappell, B. W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. GEOL SOC AM MEM 159, 2134.Google Scholar
Wickham, S. M. 1987. Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: the Trois Seigneurs Massif, Pyrenées, France. J PETROL 28, 127–69.CrossRefGoogle Scholar
Wyborn, D., Chappell, B. W. & Johnston, R. M. 1981. Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia. J GEOPHYS RES 86, 10335–48.CrossRefGoogle Scholar