Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T07:49:26.011Z Has data issue: false hasContentIssue false

Perspectives on the source, segregation and transport of granitoid magmas

Published online by Cambridge University Press:  03 November 2011

Calvin F. Miller
Affiliation:
Department of Geology, Vanderbilt University, Nashville, TN 37235, U.S.A.
E. Bruce Watson
Affiliation:
Department of Geology, Rensselaer Polytechnic Institute, Troy, NY 12181, U.S.A.
T. Mark Harrison
Affiliation:
Department of Geological Sciences, State University of New Yorkat Albany Albany, NY 12222, U.S.A.

Abstract

The pursuit of a comprehensive theory for the origin and evolution of granitoids is hindered by our incomplete understanding of the nature of the source and the mechanisms by which the magma is segregated and transported. This paper is a collection of three largely independent and necessarily incomplete perspectives on these outstanding issues. Lower to mid-crustal regions, which contain the principal source material for granitoid magmas, are highly heterogeneous. Consideration of available transfer mechanisms suggests that (1) this heterogeneity survives all foreseeable lower crustal processes; (2) closure is on very different scales for different chemical systems (e.g. Pb, Nd, Sr and O isotopes); in almost all cases, however, closure scale is much smaller than the scale of magma extraction zones for plutons; and (3) pluton-wide homogenisation of magmas by diffusion is precluded by low diffusivities in felsic melts. Thus, granitoid magmas begin life as aggregates of small, isolated chemical domains; homogenisation occurs only through (and on the scale of) effective stirring by convection. Because of variability in local conditions as well as in bulk composition, crustal regions undergoing anatexis must be patchworks with variable melt fractions and melt compositions. The way in which magma is extracted from and coalesces with this patchwork exerts a critical influence on the nature of granitoid magmas. Decoupling and unusual coupling of compositional parameters and isotopic heterogeneity within plutons are to be expected in crust-derived granitoids and do not require contamination. Granites image their sources, but these sources are ill-defined and do not correspond to simple, easily-recognised materials. Extent and patterns of heterogeneity remaining in crystallised plutons may be effective indicators of the ascent process.

The efforts of materials scientists in characterising the nature and evolution of solid-phase interconnectivity in partially-molten materials may offer some insights into crustal magmatic processes. In particular, the rheological properties of partially-molten crustal rocks are probably strongly affected by the contiguity of the solid grains in the system (i.e. the fraction of their surface area that is shared with other grains). Theory and experimental data for simple alloy systems reveal that contiguity depends principally upon melt fraction and upon the characteristic wetting angle (θ) of the system. Measured θ's in granitoids (∼50° on average) imply contiguities as high as ∼0·2 for melt fractions of 0·5 or greater. This value in turn suggests that, at least under static conditions, a continuous skeleton of solid grains is maintained to quite high degrees of melting in the crust. Consequently, regions consisting of 50% or more of melt can, in principle, maintain not only high yield strength, but also high viscosity (provided the strain rate is sufficiently low to avoid disrupting contiguity).

Despite the fact that on some time scale the continuous solid skeleton of a partially-molten region resists deformation, it is itself subject to textural evolution that could lead to the upward migration of melt. Occasional detachment of grains from the skeleton and subsequent “microsettling” within the partially-molten column may lead eventually to compaction of the solid (without plastic deformation) and net upward displacement of melt.

Proposed granite transport mechanisms are discussed, although several are viewed as having historical interest only. In the absence of tectonic transport, diapirism appears to be the most compelling of these processes. However, considerable diversity exists in the literature regarding a pivotal requirement for this mechanism. Structural studies have tended to conclude that the granite diapir must be highly crystallised in order to ascend, whereas results of physical modelling yield contradictory results. For ascent to occur in these models, the magmas must be sufficiently fluid to allow convective circulation. Indeed, heat loss associated with diapirism is so efficient as to be a significant restriction on overall ascent. The resolution of these contrasting views appears to be that they reflect different phases of the ascent/emplacement continuum. Understanding the emplacement history of a southeastern Australian pluton allows assessment, via the diapir model, of the flow properties of the rock within the deformation aureole. Results suggest rock viscosities about an order of magnitude lower than those predicted by laboratory experiments, perhaps reflecting difficulties in reproducing natural conditions in the laboratory.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahern, J. L., Turcotte, D. L. & Oxburgh, E. R. 1982. On the upward migration of an intrusion. J GEOL 89, 421432.CrossRefGoogle Scholar
Ainsari, A. & Morris, S. 1985. The effects of a strongly temperature-dependent viscosity on Stoke's drag law: Experiments and theory. J FLUID MECH 159, 459476.CrossRefGoogle Scholar
Allègre, C. J. & Ben, Othman D. 1980. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. NATURE 286, 335342.CrossRefGoogle Scholar
Anderson, E. M. 1936. The dynamics of the formation of cone-sheets, ring-dykes and caldron subsidence. PROC R SOC EDINBURGH 56, 128163.CrossRefGoogle Scholar
Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. TECTONOPHYSICS 44, 173184.CrossRefGoogle Scholar
Ashby, M. F. & Verrall, R. A. 1977. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. PHILOS TRANS R SOC LONDON A288, 5995.Google Scholar
Ayuso, R. A. 1986. Lead-isotopic evidence for distinct sources of granite and for distinct basements in the northern Appalachians, Maine. GEOLOGY 14, 322325.2.0.CO;2>CrossRefGoogle Scholar
Barker, F. 1981. Introduction to Special Issue on Granites and Rhyolites: A commentary for the non-specialist. J GEOPHYS RES 86, 1013110135.CrossRefGoogle Scholar
Barnes, C. G. 1983. Petrology and upwards zonation of the Wooley Creek Batholith, Klamath Mountains, California. J PETROL 24, 498537.CrossRefGoogle Scholar
Bateman, R. 1984. On the role of diapirism in the segregation, ascent and final emplacement of granitoid magmas. TECTONOPHYSICS 110, 211231.CrossRefGoogle Scholar
Ben, Othman D., Polve, M. & Allègre, C. J. 1984. Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. NATURE 307, 510515.Google Scholar
Bernard, Griffiths J., Peucat, J. J., Sheppard, S. & Vidal, Ph. 1985. Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb, and O) geochemical data to the study of source rock characteristics and ages. EARTH PLANET SCI LETT 74, 235250.CrossRefGoogle Scholar
Berner, H., Ramberg, H. & Stephansson, O. 1972. Diapirism in theory and experiment. TECTONOPHYSICS 15, 197218.CrossRefGoogle Scholar
Boettcher, A. L. & Wyllie, P. J. 1968. Melting of granite with excess water to 30 kilobars pressure. J GEOL 76, 235244.CrossRefGoogle Scholar
Bowen, N. L. 1948. The granite problem and the method of multiple prejudices. In Gilluly, J. (ed.) Origin of Granite, 7990. GEOL SOC AM MEM 28.Google Scholar
Buddington, A. F. 1959. Granite emplacement with special reference to North America. BULL GEOL SOC AM 70, 671747.CrossRefGoogle Scholar
Carron, J. P. & Lagache, M. 1980. Etude experimentale du fractionnement des elements Rb, Cs, Sr, et Ba entre feldspaths alcalins, solutions hydrothermales et liquides silicates dans le systeme Q-Ab-Or-H2O a 2kbar entre 700° et 800°C. BULL MINERAL 103, 571578.Google Scholar
Carter, N. L. 1976. Steady state flow of rocks. REV GEOPHYS SPACE PHYS 14, 301360.CrossRefGoogle Scholar
Carter, N. L. & Tsenn, M. C. 1987. Flow properties of continental lithosphere. TECTONOPHYSICS 136, 2763.CrossRefGoogle Scholar
Clarke, D. B. & Halliday, A. N. 1980. Strontium isotope geology of the South Mountain batholith, Nova Scotia. GEOCHIM COSMOCHIM ACTA 44, 10451058.CrossRefGoogle Scholar
Compston, W. & Chappell, B. W. 1979. Sr-isotope evolution of granitoid source rocks. In McElhinny, M. W. (ed.) The Earth: Its Origin, Structure and Evolution, 377426. London: Academic Press.Google Scholar
Cooper, R. F. & Kohlstedt, D. L. 1984. Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. TECTONOPHYSICS 107, 207233.CrossRefGoogle Scholar
Courtney, T. H. 1977. Microstructural evolution during liquid phase sintering: Part I. Development of microstructure. METALL TRANS 8, 679684.CrossRefGoogle Scholar
Courtney, T. H. 1984. Densification and structural development in liquid phase sintering. METALL TRANS 15, 10651074.CrossRefGoogle Scholar
Coward, M. P. 1981. Diapirism and gravity tectonics: A report of a Tectonics Studies Group conference held at Leeds University, 25–26 March 1980. 89–95. J STRUCT GEOL 3, 8995.CrossRefGoogle Scholar
Criss, R. E. & Taylor, H. P. Jr., 1983. An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith. BULL GEOL SOC AM 94, 640663.Google Scholar
Crowley, K. D. 1987. Distribution of radioelements and heat production in continental crust: testing hypotheses with the drill. EOS 68, 553558.CrossRefGoogle Scholar
Daly, R. A. 1933. Igneous Rocks and Depths in the Earth. New York: McGraw-Hill.Google Scholar
Daly, S. F. & Raefsky, A. 1985. On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium. GEOPHYS J R ASTRON SOC 83, 657682.CrossRefGoogle Scholar
Dell'Angelo, L. N., Tullis, J. & Yund, R. A. 1987. Transition from dislocation creep to melt-enhanced diffusion creep in fine-grained granitic aggregates. TECTONOPHYSICS (in press).Google Scholar
Deniel, C., Vidal, Ph., Fernandez, A., LeFort, P. & Peucat, J.-J. 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. CONTRIB MINERAL PETROL 96, 7892.CrossRefGoogle Scholar
DePaolo, D. J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86, 1047010488.Google Scholar
Dickinson, W. R. & Yarborough, H. 1979. Plate tectonics and hydrocarbon accumulation. AAPG CONTIN ED COURSE NOTE SER.CrossRefGoogle Scholar
Dickinson, F. W. 1958. Zone melting as a mechanism of intrusion—A possible solution of the room and superheat problems. TRANS AM GEOPHYS UNION 39, 513.Google Scholar
Dixon, J. M. 1975. Finite strain and progressive deformation in models of diapiric structures. TECTONOPHYSICS 28, 89124.CrossRefGoogle Scholar
Drury, S. A. 1977. Structures induced by granite diapirs in the Archean greenstone belt at Yellowknife, Canada: Implications for Archean geotectonics. J GEOL 85, 345358.CrossRefGoogle Scholar
Exner, H. E. & Gurland, J. 1970. A review of parameters influencing some mechanical properties of tungsten carbidecobalt alloys. POWDER METALL 13, 1331.CrossRefGoogle Scholar
Faure, G. 1986. Isotope Geology. New York: John Wiley and Sons.Google Scholar
Foster, D. A., Harrison, T. M., Williams, I. S. & Miller, C. D. 1988. The age, source and cooling of the Old Woman-Piute Mountains batholith and implication for the interpretation of K-feldspar age spectra. EOS 69, 570.Google Scholar
Fountain, D. M. & Salisbury, M. H. 1981. Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. EARTH PLANET SCI LETT 56, 263277.CrossRefGoogle Scholar
Furlong, K. P. & Myers, J. D. 1985. Thermal-mechanical modelling of the role of thermal stresses and stoping in magma contamination. J VOLCANOL GEOTHERM RES 24, 179192.CrossRefGoogle Scholar
Fyfe, W. S. 1970. Some thoughts on granitic magmas. In Newall, G. & Rast, N. (eds) Mechanisms of Igneous Intrusions, 201216. Liverpool: Gallery Press.Google Scholar
Gans, P. B. 1987. An open-system, two-layer crustal stretching model for the eastern Great Basin. TECTONICS 6, 112.CrossRefGoogle Scholar
Gariepy, C., Allegre, C. J. & Yu, R. Hu 1985. The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone: implications for crustal evolution. EARTH PLANET SCI LETT 74, 220234.Google Scholar
German, R. M. 1985. The contiguity of liquid phase sintered microstructures. METALL TRANS 16, 12471252.Google Scholar
Gilbert, G. K. 1877. Report on the Geology of the Henry Mountains. U.S. Geographic and Geologic Survey, Rocky Mountain Region.Google Scholar
Grathwohl, G. & Warren, R. 1974. The effect of cobalt content on the microstructure of liquid-phase sintered TaC-Co alloys. MATER SCI ENG 14, 5565.Google Scholar
Griffin, W. L., Sutherland, F. L. & Hollis, J. D. 1987. Geothermal profile and crust-mantle transition beneath east-central Queensland: volcanology, xenolith petrology and seismic data. J VOLCANOL GEOTHERM RES 31, 177203.CrossRefGoogle Scholar
Gromet, L. P., Dymek, R. F., Haskin, L. A. & Koroteu, R. L. 1984. The “North American shale composite”: its compilation, major and trace element characteristics. GEOCHIM COSMOCHIM ACTA 48, 24692482.CrossRefGoogle Scholar
Grout, F. F. 1932. Petrography and Petrology. New York: McGraw Hill.Google Scholar
Halliday, A. N. 1985. Isotope geochemistry. Contamination or source region heterogeneity? NATURE 315, 274.CrossRefGoogle Scholar
Halliday, A. N., Stephens, W. E. & Harmon, R. S. 1980. Rb-Sr and O isotopic relationships in three zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magmas. J GEOL SOC LONDON 137, 329348.Google Scholar
Hamilton, W. 1981. Crustal evolution by arc magmatism. PHILOS TRANS R SOC LONDON A301, 279291.Google Scholar
Hamilton, W. 1983. Mode of extension of continental crust. GEOL SOC AM ABSTR PROG 15, 311.Google Scholar
Hammerstrom, J. M. & Zen, E-an 1986. Aluminum in hornblende: An empirical geobarometer. AM MINERAL 71, 12971313.Google Scholar
Hansen, F. D. 1982. Semibrittle creep of selected crustal rocks at 1000 M Pa. Ph.D Thesis, Texas A and M University. (Reported in Carter & Tsenn 1987.)Google Scholar
Hansen, F. D. & Carter, N. L. 1982. Creep of selected crustal rocks at 1000 MPa. EOS 63, 437.Google Scholar
Harmon, R. S., Halliday, A. N., Clayburn, J. A. P. & Stephens, W. E. 1984. Chemical and isotopic systematics of the Caledonian intrusions of Scotland and northern England: a guide to magma source region and magma-crust interaction. PHILOS TRANS R SOC LONDON A310, 709742.Google Scholar
Harrison, T. M.Duncan, I. & McDougall, I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. GEOCHIM COSMOCHIM ACTA 49, 24612468.CrossRefGoogle Scholar
Harrison, T. M., Aleinikoff, J. N. & Compston, W. 1987. Observations and controls on the occurrence of inherited zircon in Concord-type granitoids, New Hampshire. GEOCHIM COSMOCHIM ACTA 51, 25482558.CrossRefGoogle Scholar
Harrison, T. M. & Clarke, G. K. C. 1979. A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton, British Columbia. CAN J EARTH SCI 16, 411420.CrossRefGoogle Scholar
Harrison, T. M. & Fitz, Gerald J. D. 1986. Exsolution in hornblende and its consequences for 40Ar/39Ar age spectra and closure temperatures. GEOCHIM COSMOCHIM ACTA 50, 247253.Google Scholar
Harrison, T. M. & Watson, E. B. 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts at variable water content. CONTRIB MINERAL PETROL 84, 6674.CrossRefGoogle Scholar
Heier, K. S. 1973. Geochemistry of granulite facies and problems of their origin. PHILOS TRANS R SOC LONDON A273, 439442.Google Scholar
Hofmann, A. W. & Hart, S. R. 1978. An assessment of local and regional isotopic equilibrium in the mantle. EARTH PLANET SCI LETT 38, 4462.CrossRefGoogle Scholar
Hoisch, T. D. 1987. Heat transport by fluids during Late Cretaceous regional metamorphism in the Big Maria Mountains, southeastern California. BULL GEOL SOC AM 98, 549553.2.0.CO;2>CrossRefGoogle Scholar
Holder, M. T. 1979. An emplacement mechanism for post-tectonic granites and its implication for the geochemical features. In Atherton, M. P. & Tarney, J. (eds) Origin of Granite Batholiths, Geochemical Evidence, 116128. Nantwich: Shiva.Google Scholar
Hollister, L. S., Grissom, G. C., Petters, E. K., Stowell, H. H. & Sisson, V. D. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. AM MINERAL 72, 231239.Google Scholar
Hutchison, W. W. 1970. Metamorphic framework and plutonic styles in the Prince Rupert region of the Centrel Coast Mountains, British Columbia. CAN J EARTH SCI 7, 376405.CrossRefGoogle Scholar
Hyndman, D. W. 1981. Controls on source and depth of emplacement of granitic magma. GEOLOGY 9, 244249.Google Scholar
Hyndman, D. W. & Foster, D. A. 1988. The role of tonalites and mafic dikes in the generation of the Idaho batholith. J GEOL 96, 3146.CrossRefGoogle Scholar
Jaoul, O., Shelton, G. & Tullis, J. 1981. Quartzite deformation as a function of water at 15 kb: Preliminary results. EOS 62, 396.Google Scholar
Jaoul, O., Tullis, J. & Kronenburg, A. (1984). The effect of varying water contents on the creep behaviour of Heavitree Quartzite. J GEOPHYS RES 89, 42984312.Google Scholar
Jurewicz, S. R. & Watson, E. B. 1985. The distribution of partial melt in a granitic system: The application of liquid phase sintering theory. GEOCHIM COSMOCHIM ACTA 49, 11091122.CrossRefGoogle Scholar
Juteau, M., Michard, A., & Albarede, F. 1986. The Pb–Sr-Nd isotope geochemistry of some recent circum-Mediterranean granites. CONTRIB MINERAL PETROL 92, 331340.CrossRefGoogle Scholar
Kay, R. W. 1984. Elemental abundances relevant to identification of magma sources. PHILOS TRANS R SOC LONDON A310, 535547.Google Scholar
Kay, R. W. & Kay, S. M. 1980. Chemistry of the lower crust: inferences from magmas and xenoliths. In Continental Tectonics (Geophysics Study Committee), 139150. Washington, D.C: National Academy of Sciences.Google Scholar
Kingery, W. D., Bowen, H. K. & Uhlmann, D. R. 1976. Introduction to Ceramics, 2nd edn, New York: John Wiley.Google Scholar
Kistler, R. W., Chappell, B. W., Peck, D. L. & Bateman, P. C. 1986. Isotopic variation in the Tuolemne Intrusive Suite, central Sierra Nevada, California. CONTRIB MINERAL PETROL 94, 205220.CrossRefGoogle Scholar
Koch, P. S., Christie, J. M. & George, R. P. 1980. Flow laws of “wet” quartzite in the α-quartz field. EOS 61, 376.Google Scholar
Kronenberg, A. K. & Tullis, J. 1984. Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening. J GEOPHYS RES 89, 42814297.CrossRefGoogle Scholar
Lachenbruch, A. H. 1968. Preliminary geothermal model of the Sierra Nevada. J GEOPHYS RES 73, 69776989.CrossRefGoogle Scholar
Longstaffe, F. J. & Schwarcz, H. P. 1977. 18O/16O of Archean clastic metasedimentary rocks: A petrogenetic indicator for Archean gneisses? GEOCHIM COSMOCHIM ACTA 41, 13031312.CrossRefGoogle Scholar
Magaritz, M. & Taylor, H. P. Jr., 1976. 18O/16O and D/H studies along a 500 km traverse across the Coast Range Batholith and its country rocks, central British Columbia. CAN J EARTH SCI 13, 15141536.CrossRefGoogle Scholar
Mahon, K. I., Harrison, T. M. & Drew, D. A. 1988. Ascent of a granitoid diapir in a temperature varying medium. J GEOPHYS RES 93, 11741188.CrossRefGoogle Scholar
Marsh, B. D. 1981. On the crystallinity, probability of occurrence, and rheology of lava and magma. CONTRIB MINERAL PETROL 78, 8598.CrossRefGoogle Scholar
Marsh, B. D. 1982. On the mechanics of igneous diapirism, stoping and zone melting. AM J SCI 282, 808855.Google Scholar
Masi, U., O'Neil, J. R. & Kistler, R. W. 1981. Stable isotope systematics in Mesozoic granites of central and northern California and southwestern Oregon. CONTRIB MINERAL PETROL 76, 116126.CrossRefGoogle Scholar
McCulloch, M. T. & Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. EARTH PLANET SCI LETT 58, 5164.CrossRefGoogle Scholar
Mclntyre, G. A., Brooks, C., Compston, W., & Turek, A. 1966. The statistical assessment of Rb-Sr isochrons. J GEOPHYS RES 71, 54595468.CrossRefGoogle Scholar
McKenzie, D. P. 1984. The generation and compaction of partially molten rock. J PETROL 25, 713765.CrossRefGoogle Scholar
McKenzie, D. P. 1985. The extraction of magma from the crust and mantle. EARTH PLANET SCI LETT 74, 8191.CrossRefGoogle Scholar
Michard-Vitrac, A., Albarede, F., Dupuis, C. & Taylor, H. P. Jr., 1980. The genesis of Variscan (Hercynian) plutonic rocks: inferences from Sr, Pb, and O studies on the Maladita igneous complex, central Pyrenees (Spain). CONTRIB MINERAL PETROL 72, 5772.Google Scholar
Michard-Vitrac, A., Albarede, F. & Allegre, C. J. 1981. Lead isotopic composition of Hercynian granitic K-feldspars constrains continental genesis. NATURE 291, 460464.Google Scholar
Miller, C. F., Watson, E. B. & Rapp, R. P. 1985. Experimental investigation of mafic mineral-felsic liquid equilibria: Preliminary results and petrogenetic implications. EOS 66, 1130.Google Scholar
Miller, C. F., Wooden, J. L., Bennett, V., Wright, J. E., Solomon, G. C. & Hurst, R. W. 1988. Petrogenesis of the composite peraluminous-metaluminous Old Woman-Puite Range batholith, southeastern California: isotopic constraints. In Anderson, J. L. (ed.) The Nature and Origin of Cordilleran Magmatism. GEOL SOC AM MEM (in press).Google Scholar
Moore, J. G. 1963. Geology of the Mount Pinchot quadrangle, southern Sierra Nevada, California. US GEOL SURVEY BULL 1130.Google Scholar
Morgan, P., Sawka, W. N. & Furlong, K. P. 1987. Introduction: Background and implications of the linear heat flow-heat production relationship. GEOPHYS RES LETT 14, 248251.CrossRefGoogle Scholar
Morris, S. 1982. The effects of a stongly temperature-dependent viscosity on slow flow past a hot sphere. J FLUID MECH 124, 287290.CrossRefGoogle Scholar
Niemi, A. N. & Courtney, T. H. 1983. Settling in solid-liquid systems with specific application to liquid phase sintering. ACTA METALL 9, 13931401.CrossRefGoogle Scholar
O'Neil, J. R. & Chappell, B. W. 1977. Oxygen and hydrogen isotope relations in the Berridale batholith. J GEOL SOC LONDON 133, 559571.CrossRefGoogle Scholar
Padovani, E. & Carter, J. 1977. Aspects of the deep crustal evolution beneath south central New Mexico. In Heacock, J. (ed.) The Earth's Crust, AM GEOPHYS UNION GEOPHYS MONOGR 20, 1955.Google Scholar
Paterson, M. S. 1987. Problems in the extrapolation of laboratory rheological data. TECTONOPHYSICS 133, 3343.Google Scholar
Pharr, G. M. & Ashby, M. F. 1983. On creep enhanced by a liquid phase. ACTA METALL 31, 129138.CrossRefGoogle Scholar
Pitcher, W. S. & Berger, A. R. 1972. The geology of Donegal: A study of granite emplacement and unroofing. London: Wiley Interscience.Google Scholar
Raj, R. 1982. Creep in polycrystalline aggregates by matter transport through a liquid phase. J GEOPHYS RES 87, 47314739.Google Scholar
Ramberg, H. 1963. Experimental study of gravity tectonics by means of centrifuged models. BULL GEOL INST UNIV UPPSALA 42, 197.Google Scholar
Ramberg, H. 1970. Model studies in relation to intrusion of plutonic bodies: In Rast, N. (ed.) Mechanisms of Igneous Intrusion, 261286. GEOL J SPEC ISSUE 2, 261286.Google Scholar
Ramberg, H. 1972. Theoretical models of density stratification and diapirism in the Earth. J GEOPHYS RES 77, 877889.CrossRefGoogle Scholar
Ramsay, J. G. 1981. Emplacement mechanics of the Chindamara batholith, Zimbabwe. ABSTR, in J STRUCT GEOL 3, 93.Google Scholar
Read, H. H. 1948. Granites and granites. In Gilluly, J. (ed.) Origin of Granite, 119. GEOL SOC AM MEM 28.Google Scholar
Ribe, N. M. 1983. Diapirism in the earth's mantle: Experiments on the motion of a hot sphere in a fluid with temperature-dependent viscosity. J VOLCANOL GEOTHERM RES 16, 221245.CrossRefGoogle Scholar
Richter, F. M. & McKenzie, D. P. 1984. Dynamical models of melt segregation from a deformable matrix. J GEOL 92, 729740.CrossRefGoogle Scholar
Roddick, J. C. & Compston, W. 1977. Strontium isotopic equilibration: a solution to a paradox. EARTH PLANET SCI LETT 34, 238246.Google Scholar
Rollinson, H. R. & Windley, B. F. 1980. Selective elemental depletion during metamorphism of Archean granulites, Scourie, NW Scotland. CONTRIB MINERAL PETROL 72, 257263.CrossRefGoogle Scholar
Rubenstone, J. L., Bowman, J. R., Pavlis, T. L., Reason, M. & Onstott, T. C. 1987. Isotope systematics of a Cretaceous tonalite-trondhjemite complex in southern Alaska. GEOL SOC AM ABSTR PROG 19, 445.Google Scholar
Rudnick, R. L., McLennan, S. M. & Taylor, S. R. 1985. Large ion lithophile elements in rocks from high-pressure granulite facies terrains. GEOCHIM COSMOCHIM ACTA 49, 16451655.CrossRefGoogle Scholar
Sawka, W. N. & Chappell, B. W. 1987. Mafic xenoliths from I- and S-type granitoids: evidence for variations in deep crustal radioactive heat production. GEOPHYS RES LETT 14, 303306.Google Scholar
Shaw, D. M. 1978. Trace element behaviour during anatexis in the presence of a fluid phase. GEOCHIM COSMOCHIM ACTA 42, 933943.CrossRefGoogle Scholar
Shaw, H. R. 1980. Fracture mechanisms of magma transport from the mantle to the surface. In Hargraves, R. B. (ed.) Physics of Magmatic Processes, 201264. Princeton, N.J.: Princeton University Press.Google Scholar
Shieh, Y. N. & Schwarcz, H. P. 1974. Oxygen isotope studies of granite and migmatite, Grenville Province of Ontario, Canada. GEOCHIM COSMOCHIM ACTA 38, 2145.CrossRefGoogle Scholar
Soula, J.-C. 1981. Characteristics and mode of emplacement of diapiric gneiss domes and plutonic domes in Central-Eastern Pyrenees. ABSTR, in J STRUCT GEOL 3, 91.Google Scholar
Speer, J. A., Becker, S. W. & Farrar, S. S. 1980. Field relations and petrology of the post-metamorphic, coarse-grained granitoids and associated rocks of the southern Appalachian Piedmont. In Wones, D. R. (ed.) The Caledonides in the USA, 137148. DEPT GEOL SCI VP1 and SU MEM 2.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. EARTH PLANET SCI LETT 36, 359362.Google Scholar
Stephansson, P. 1975. Polydiapirism of granitic rocks in the Svecofennian of Central Sweden. PRECAMBRIAN RES 2, 189214.CrossRefGoogle Scholar
Stephansson, O. 1977. Granite diapirism in Archean rocks. J GEOL SOC LONDON 133, 357361.Google Scholar
Stevenson, D. J. 1986. On the role of surface tension in the migration of melts and fluids. GEOPHYS RES LETT 13, 11491152.CrossRefGoogle Scholar
Sykes, M. L. 1986. Ascent of granitic magma: Constraints from thermodynamics and phase equilibria. Ph.D. Thesis, Arizona State University.Google Scholar
Sylvester, A. G., Oertel, G., Nelson, C. A. & Christie, J. M. 1978. Papoose Flat pluton: A granitic blister in the Inyo Mountains, California. BULL GEOL SOC AM 89, 12051219.2.0.CO;2>CrossRefGoogle Scholar
Taylor, H. P. Jr., & Silver, L. T. 1978. Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. In Zartman, R. E. (ed.) Short Papers, 4th INT CONF GEOCHRON COSMOCHRON ISOTOPE GEOL U.S.G.S. Open File Report 78–701, 423426.Google Scholar
Taylor, H. P. Jr, & Turi, B. 1976. High-18O igneous rocks from the Tuscan magmatic province, Italy. CONTRIB MINERAL PETROL 55, 3354.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. PHILOS TRANS R SOC LONDON A301, 381399.Google Scholar
Tetley, N. W. 1978. Geochronology by the 40Ar/39Ar technique using HIFAR reactor. Ph.D. Thesis, Australian National University, Canberra.Google Scholar
Tullis, J. & Yund, R. A. 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures. GEOLOGY 15, 606609.2.0.CO;2>CrossRefGoogle Scholar
Turcotte, D. L. 1982. Magma migration. ANN REV EARTH PLANET SCI 10, 397408.CrossRefGoogle Scholar
Turcotte, D. L. & Emerman, S. H. 1985. Magma fracture as a mechanism for magma migration. EOS 66, 361.Google Scholar
Urabe, T. 1985. Aluminous granite as a source magma of hydrothermal ore deposits: an experimental study. ECON GEOL 80, 148157.CrossRefGoogle Scholar
Valley, J. W. & O'Neil, J. R. 1984. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotopic evidence. CONTRIB MINERAL PETROL 85, 158173.Google Scholar
Van der Molen, I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. CONTRIB MINERAL PETROL 70, 299318.CrossRefGoogle Scholar
Vernon, R. H. & Flood, R. H. 1988. Contrasting deformation and metamorphsim of S- and I-type granitoids in the Lachlan Fold Belt, eastern Australia. TECTONOPHYSICS (in press),CrossRefGoogle Scholar
von Bargen, N. & Waff, H. S. 1986. Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J GEOPHYS RES 91, 92619276.CrossRefGoogle Scholar
Wall, V. J., Clemens, J. D. & Clarke, D. B. 1987. Models for granitoid evolution and source composition. J GEOL 95, 731749.CrossRefGoogle Scholar
Warren, R. 1968 Microstructural development during the liquid-phase sintering of two-phase alloys, with special reference to the NbC/Co system. J MATERIALS SCI 3, 471485.CrossRefGoogle Scholar
Warren, R. 1972. Microstructural development during the liquid-phase sintering of VC–Co alloys. J MAT SCI 7, 14341442.CrossRefGoogle Scholar
Warren, R. and Waldron, M. B. 1972. Microstructural development during the liquid-phase sintering of cemented carbides. I. Wettability and grain contact. POWDER MET ALL 15, 166180.CrossRefGoogle Scholar
Watson, E. B. & Brenan, J. M. 1987. Fluids in the lithosphere, part 1: experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties and fluid inclusion formation. EARTH PLANET SCI LETT (in press).Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.Google Scholar
Weaver, B. L. & Tarney, J. 1981. Lewisian gneiss geochemistry and Archean crustal development models. EARTH PLANET SCI LETT 55, 171180.Google Scholar
Webb, P. C., Tindle, A. G. & Barritt, S. D. 1987. Factors controlling the distribution of heat production in selected UK granites. GEOPHYS RES LETT 14, 299302.CrossRefGoogle Scholar
Wendlandt, R. F. & Harrison, W. J. 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: results and implications for the formation of light rare earth-enriched rocks. CONTRIB MINERAL PETROL 69, 409419.CrossRefGoogle Scholar
White, A. J. R., Williams, I. S. & Chappell, B. W. 1977. Geology of the Berridale 1:100,000 Sheet. Geological Survey of New South Wales 8625.Google Scholar
Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. J GEOL SOC LONDON 144, 281297.Google Scholar
Wickham, S. M., Taylor, H. P. Jr., & Snoke, A. W. 1987. Fluid rock-melt interaction in metamorphic core complexes—a stable isotope study of the Ruby Mountains—East Humboldt Range, Nevada. GEOL SOC AM ABSTR PROG 19, 463.Google Scholar
Wickham, S. M. & Taylor, H. P. Jr., 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. CONTRIB MINERAL PETROL 95, 255268.Google Scholar
Williams, I. S., Compston, W., Chappell, B. W. & Shirahase, T. 1975. Rubidium-Strontium age determinations on micas from a geological controlled, composite batholith. J GEOL SOC AUST 22, 497505.CrossRefGoogle Scholar
Williams, I. S., Compston, W. & Chappell, B. W. 1983. Zircon and monazite U-Pb systems and the histories of I-type magmas, Berridale Batholith, Australia. J PETROL 24, 7697.CrossRefGoogle Scholar
Wooden, J. L. & Stacey, J. S. 1987. Lead isotopic constraints on the origin of Cordilleran granitic magmatism in the western U.S. GEOL SOC AM ABSTR PROG 19, 465.Google Scholar
Wyllie, P. J. 1977. Crustal anatexis: An experimental review. TECTONOPHYSICS 43, 4171.CrossRefGoogle Scholar
Zartman, R. E. & Doe, B. R. 1981. Plumbotectonics—The Model. TECTONOPHYSICS 75, 135162.Google Scholar