Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T22:59:12.841Z Has data issue: false hasContentIssue false

Palaeoclimatic information from ice cores: the Vostok records

Published online by Cambridge University Press:  03 November 2011

J. Jouzel
Affiliation:
Laboratoire de Géochimic Isotopique, C.E.A., DSM/DPhG/SPER, C.E.N. de Saclay, 91191 Git sur Yvette cedex, France
J. R. Petit
Affiliation:
Laboratoire de Géochimic Isotopique, C.E.A., DSM/DPhG/SPER, C.E.N. de Saclay, 91191 Git sur Yvette cedex, France
D. Raynaud
Affiliation:
Laboratoire de Glaciologie et Géophysique de l'Environnement, BP96, 38402 St Martin d'Hères cedex, France.

Abstract

Ice deposits from Greenland and Antarctic ice sheets have stored over long periods of time information about the climate and environment of our planet. Attention will be focused on the 2083 m Vostok Antarctic ice core which represents a unusually long record (160 000 ka) due to the low accumulation rate (∼2 g cm−2a−1) and the rather uniform conditions of ice flow. This ice core provides a unique opportunity to obtain several palaeo-data such as temperature, accumulation (precipitation), aerosol loading, CO2 and trace gases over a full glacial-interglacial climatic cycle.

The Vostok temperature, deduced from the interpretation of the deuterium content, and the CO2 records show a large 100 ka signal with a change of the order of 10°C and 70 ppmv respectively. The two records are closely correlated and both display shorter periodicities characteristic of the earth orbital parameters. CH4 concentrations also show variations from about 0·35 to about 0·65 ppmv linked with the glacial-interglacial warming. These features suggest a fundamental link between the climatic system and the carbon cycle and stress the role of radiatively active gases in climatic changes.

The accumulation (precipitation) record appears to be governed by temperature with values during the coldest stages reduced by a factor of 2 with respect to the present rate. Ice deposited during these coldest stage is also characterised by high concentration of marine and terrestrial aerosols; these peaks probably reflect strengthened sources and meridional transport during full glacial conditions, linked to higher wind speed, more extensive arid areas on surrounding continent and a greater exposure of continental shelves.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Angelis, M., Barkov, N. I. & Petrov, V. N. 1987. Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. NATURE 325, 318–21.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Lao, Y., Anderson, R. F. & Fairbanks, R. G. 1989. Dating of the last interglacial period by U/Th mass spectrometry of Carribean corals. Presented at ICP III, Cambridge (UK), August 1989.Google Scholar
Barkov, N. I., Korotkevitch, E. S., Gordienko, F. G. & Kotlyakov, V. M. 1977. The analysis of ice cores from Vostok station (Antarctica) to the depth of 950 m. UGGI International Symposium on Isotopes and Impurities in snow and ice, Grenoble, August 1975. AIHS Publ. 118, 382387.Google Scholar
Barnola, J. M., Raynaud, D., Korotkevitch, Y. S. & Lorius, C. 1987. Vostok ice core provides 160 000 year record of atmospheric CO2. NATURE 329, 408–14.CrossRefGoogle Scholar
Berger, A. 1988. Milankovitch theory and climate. REV GEOPHYS 26, 654–7.CrossRefGoogle Scholar
Broccoli, A. J. & Manabe, S. 1987. The influence of continental ice, atmospheric CO2, land albedo on the climate of the Last Glacial Maximum. CLIM DYN 1, 87–9.CrossRefGoogle Scholar
Broecker, W. S. & Peng, T. H. 1986. Glacial to interglacial changes in the operation of the global carbon cycle. RADIOCARBON 28, 309–27.CrossRefGoogle Scholar
Budd, W. F. 1980. The importance of the polar regions for the atmospheric carbon dioxide concentrations. InPearman, G. I. (ed) Carbon Dioxide and Climate: Australian Research 115–28. Australian Academy of Science.Google Scholar
Cess, R. D. & Potter, G. L. 1988. A methodology for understanding and intercomparing atmospheric climate feedbacks in General Circulation Models. J GEOPHYS RES 93, 8305–14.CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. TELLUS 16, 436–68.CrossRefGoogle Scholar
Dansgaard, W. & Oeschger, H. 1989. Past environmental long-term records from the Arctic in the Environmental record in glaciers and ice sheets. In Oeschger, H. & Langway, C. C. (eds), Wiley and Sons, 287317.Google Scholar
Delmas, R. J., Ascencio, J. M. & Legrand, M. 1980. Polar ice evidence that atmospheric CO2 20 000 yr BP was 50% of the present. NATURE 284, 155–7.CrossRefGoogle Scholar
Faure, H. 1987. Mécanisme d'amplification du cycle climatique global: l'effet de couvercle de la glace de mer contrôle le CO2 atmosphérique. C. R. Acad. Sci. PARIS, t. 305, série II, p. 523–27.Google Scholar
Genthon, C., Barnola, J. M., Raynaud, D., Lorius, C., Jouzel, J., Barkov, N. I., Korotkevich, Y. S. & Kotlyakov, V. M. 1987. Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. NATURE 329, 414–18.CrossRefGoogle Scholar
Guiot, J., Pons, A., De Beaulieu, J. L. & Reille, M. 1989. A 140 000 year reconstruction from two European pollen records. NATURE 338, 309–13.CrossRefGoogle Scholar
Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D. & Stone, P. 1985. Climate response times: dependence on climate sensitivity and ocean mixing. SCIENCE 229, 857–9.CrossRefGoogle ScholarPubMed
Harvey, L. D. 1988. Climatic impact of ice age aerosols. NATURE 334, 333–5.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. & Shackleton, N. J. 1976. Variations in the Earth orbit pacemaker of the ice ages. SCIENCE 194, 1121–32.CrossRefGoogle ScholarPubMed
Imbrie, J. & Imbrie, J. Z. 1980. Modelling the climate response to orbital variations. SCIENCE 207, 243–53.CrossRefGoogle ScholarPubMed
Jouzel, J. & Merlivat, L. 1984. Deuterium and oxygen 18 in precipitation: modelling of the isotopic effects during snow formation. J GEOPHYS RES 89, 11749–57.CrossRefGoogle Scholar
Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M. & Petrov, V. M. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years). NATURE 329, 403–8.CrossRefGoogle Scholar
Jouzel, J., Raisbeck, G., Benoist, J. P., Yiou, F., Lorius, C., Raynaud, D., Petit, J. R., Barkov, N. I., Korotkevitch, Y. S. & Kotlyakov, V. M. 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65 000 and 15 000 years ago. QUATERN RES 31, 135–50.CrossRefGoogle Scholar
Kent, D. V. 1982. Apparent correlation of paleomagnetic intensity and climatic records in deep sea sediments. NATURE 299, 538–9.CrossRefGoogle Scholar
Kukla, G. 1987. Loess stratigraphy in Central China. QUATERN SCI REV 6, 191219.CrossRefGoogle Scholar
Legrand, M. R., Lorius, C., Barkov, N. I. & Petrov, V. N.(1988) Vostok (Antarctic ice core): atmospheric chemistry changes over the last climatic cycle (160 000 years). ATMOS ENVIRON 22, 317–31.CrossRefGoogle Scholar
Le Treut, H. & Ghil, M. 1983. Orbital forcing, climatic interactions and glaciation cycles. J GEOPHYS RES 88, 5167–90.CrossRefGoogle Scholar
Lorius, C. & Merlivat, L. 1977. Distribution of mean surface stable isotope values in East Antarctica; observed changes with depth in a coastal area. In: Isotopes and impurities in snow and ice, Proc. Grenoble symp. August-September 1987, IAHS, N° 118, 127137.Google Scholar
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevich, Y. S. & Kotlyakov, V. M. 1985. A 150,000 year climatic record from Antarctic ice. NATURE 316, 591–6.CrossRefGoogle Scholar
Lorius, C., Barkov, N. I., Jouzel, J., Korotkevitch, Y. S., Kotlyakov, V. M. & Raynaud, D. 1988. Antarctic ice core: CO2 and climatic change over the last climatic cycle. EOS 69, 681, 683–4.CrossRefGoogle Scholar
Lorius, C., Raisbeck, G., Jouzel, J. & Raynaud, D. 1989. Long-term environmental records from Antarctic ice cores. In: The environmental record ice glaciers and ice sheets. Dahlem Konferenzen, H. Oeschger and Langway, C. C. (eds), Wiley and Sons, 343361.Google Scholar
Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H.The ice-core record: climate sensitivity and future greenhouse warming. NATURE 347, 139–45.CrossRefGoogle Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. & Shackleton, N. J. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000 year chronostratigraphy. QUATERN RES 27, 1, 130.CrossRefGoogle Scholar
Mounier, L. 1988. Thesis. Etude des microparticules insolubles déposées dans la glace Antarctique au cours du dernier cycle climatique. (unpublished), Laboratoire de Glaciologie et Géophysique de l'Environnement, 180 p.Google Scholar
Naftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. 1982. Ice core sample measurements give atmospheric CO2 content during the past 40 000 years. NATURE 295, 220–3.CrossRefGoogle Scholar
Petit, J. R., Briat, M. & Royer, A. 1981. Ice age aerosol content from East Antarctic ice core samples and past wind strength. NATURE 293, 391–4.CrossRefGoogle Scholar
Petit, J. R., Duval, P. & Lorius, C. 1987. Long-term climatic changes indicated by crystal growth in polar ice. NATURE 326, 62–4.CrossRefGoogle Scholar
Petit, J. R., Mounier, L., Jouzel, J., Korotkevitch, Y. S., Kotlyakov, V. M. & Lorius, C. (1990). Paleoclimatological and chronological implications of the Vostok dust record. NATURE 343, 56–8.CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Fruneau, M., Loiseaux, J. M., Lieuvin, M., Ravel, J. C. & Lorius, C. 1981. Cosmogenic 10Be concentrations in Antarctic ice during the past 30 000 years. NATURE 292, 825–6.CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J. & Barkov, N. I. 1987. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. NATURE 326, 273–7.CrossRefGoogle Scholar
Royer, A., De Angelis, M. & Petit, J. R. 1983. A 30 000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models. CLIM CHANGE 5, 381412.CrossRefGoogle Scholar
Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevitch, Y. S. & Lorius, C. 1988. Climatic and CH4 cycle implications of glacial–interglacial CH4 change in the Vostok ice core. NATURE 333, 655–7.CrossRefGoogle Scholar
Rind, D., Peteet, D. & Kukla, G. (1989). Can Milankovitch orbital variation initiate the growth of ice sheets in a General Circulation Model? J GEOPHYS RES 941, 12851–71.CrossRefGoogle Scholar
Robin, G de Q. 1977. Ice cores and climatic changes. PHIL TRANS ROY SOC LOND B 280, 143–68.Google Scholar
Robinson, S. G. 1986. The late Pleistocene paleoclimatic record of North Atlantic deep-sea sediments revealed by mineral magnetic measurements. PHYS EARTH & PLANET INTERIORS 42, 2247.CrossRefGoogle Scholar
Saltzman, B. 1987. Carbon dioxide and the δ18O record of late-quaternary climatic change: a global model. CLIM DYN 1, 7785.CrossRefGoogle Scholar
Shackleton, N. J. & Pisias, N. G. 1985. Atmospheric carbon dioxide, orbital forcing and climate. GEOPHYS MONOGR 32 (Sundquist, E. T. & Broecker, W. S.), 303317. American Geophysical Union, Washington DC.Google Scholar
Stauffer, B., Lochbronner, E., Oeschger, H. & Schwander, J. 1988. Methane concentration in the glacial atmosphere was only half of the preindustrial Holocene. NATURE 332, 812–4.CrossRefGoogle Scholar
Thomson, D. J. 1982. Spectrum estimation and harmonic analysis. PROC IEEE 70(9), 1055–96.CrossRefGoogle Scholar
Yiou, F., Raisbeck, G., Lorius, C. & Barkov, N. I. 1985. 10Be in ice at Vostok Antarctica during the last climatic cycle. NATURE 316, 616–7.CrossRefGoogle Scholar
Yiou, P., Genthon, C., Jouzel, J., Ghil, M., Le Treut, H., Barnola, J. M., Lorius, C. & Korotkevitch, Y. N. 1989. High-frequency paleo-variability in climate and in CO2 levels from Vostok ice-core records. Interactions of the Global Carbon and Climate System. Electric Power Research Institution Report, Keir, P. (ed) (sous presse).Google Scholar