Published online by Cambridge University Press: 03 November 2011
Ice deposits from Greenland and Antarctic ice sheets have stored over long periods of time information about the climate and environment of our planet. Attention will be focused on the 2083 m Vostok Antarctic ice core which represents a unusually long record (160 000 ka) due to the low accumulation rate (∼2 g cm−2a−1) and the rather uniform conditions of ice flow. This ice core provides a unique opportunity to obtain several palaeo-data such as temperature, accumulation (precipitation), aerosol loading, CO2 and trace gases over a full glacial-interglacial climatic cycle.
The Vostok temperature, deduced from the interpretation of the deuterium content, and the CO2 records show a large 100 ka signal with a change of the order of 10°C and 70 ppmv respectively. The two records are closely correlated and both display shorter periodicities characteristic of the earth orbital parameters. CH4 concentrations also show variations from about 0·35 to about 0·65 ppmv linked with the glacial-interglacial warming. These features suggest a fundamental link between the climatic system and the carbon cycle and stress the role of radiatively active gases in climatic changes.
The accumulation (precipitation) record appears to be governed by temperature with values during the coldest stages reduced by a factor of 2 with respect to the present rate. Ice deposited during these coldest stage is also characterised by high concentration of marine and terrestrial aerosols; these peaks probably reflect strengthened sources and meridional transport during full glacial conditions, linked to higher wind speed, more extensive arid areas on surrounding continent and a greater exposure of continental shelves.