Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T15:45:23.967Z Has data issue: false hasContentIssue false

Oxygen, hydrogen, and strontium isotope constraints on the origin of granites

Published online by Cambridge University Press:  03 November 2011

Hugh P. Taylor Jr.
Affiliation:
Division of Geological and Planetary Sciences,California Institute of Technology Pasadena, CA 91125, U.S.A.

Abstract

Oxygen isotope data are very useful in determining the source rocks of granitic magmas, particularly when used in combination with Sr, Pb, and Nd isotope studies. For example, unusually high δ18O values in magmas (δ18O> +8) require the involvement of some precursor parent material that at some time in the past resided on or near the Earth's surface, either as sedimentary rocks or as weathered or hydrothermally altered rocks. The isotopic systematics which are preserved in the Mesozoic and Cenozoic batholiths of western North America can be explained by grand-scale mixing of three broadly defined end-members: (1) oceanic island-arc magmas derived from a “depleted” (MORB-type?) source in the upper mantle (δ18O c. +6 and 87Sr/86Sr c. 0·703); (2) a high-18O (c. +13 to +17) source with a very uniform 87Sr/86Sr (c. 0·708 to 0·712), derived mainly from eugeosynclinal volcanogenic sediments and (or) hydrothermally altered basalts; and (3) a much more heterogeneous source (87Sr/86Sr c. 0·706 to 0·750, or higher) with a high δ18O (c. +9 to +15) where derived from supracrustal metasedimentary rocks and a much lower δ18O (c. +7 to +9) where derived from the lower continental crust of the craton. These end-members were successively dominant from W to E, respectively, within three elongate N–S geographic zones that can be mapped from Mexico all the way N to Idaho.

18O/16O studies (together with D/H analyses) can, however, play a more important and certainly a unique role in determining the origins of the aqueous fluids involved in the formation of granitic and rhyolitic magmas. Fluid-rock interaction effects are most clear-cut when low-18O, low-D meteoric waters are involved in the isotopic exchange and melting processes, but the effects of other waters such as seawater (with a relatively high δD c. 0) can also be recognised. Because of these hydrothermal processes, rocks that ultimately undergo partial melting may exhibit isotopic signatures considerably different from those that they started with. We discuss three broad classes of potential source materials of such “hydrothermal-anatectic” granitic magmas, based mainly on water/rock (w/r), temperature (T), and the length of time (t) that fluid-rock interaction proceeds: (Type 1) epizonal systems with a wide variation in whole-rock δ18O and extreme 18O/16O disequilibrium among coexisting minerals (e.g. quartz and feldspar); (Type 2) deeper-seated and (or) longer-lived systems, also with a wide spectrum of whole-rock δ18O, but with equilibrated 18O/16O ratios among coexisting minerals; (Type 3) thoroughly homogenised and equilibrated systems with relatively uniform δ18O in all lithologies. Low-18O magmas formed by melting of rocks altered in a Type 2 or a Type 3 meteoric-hydrothermal system are the only kinds of “hydrothermal-anatectic” granitic magmas that are readily recognisable in the geological record. Analogous effects produced by other kinds of aqueous fluids may, however, be quite common, particularly in areas of extensional tectonics and large-scale rifting. The greatly enhanced permeabilities in such fractured terranes make possible the deep convective circulation of ground waters and sedimentary pore fluids. The nature and origin of low-18O magmas in the Yellowstone volcanic field and the Seychelles Islands are briefly reviewed in light of these concepts, as is the development of high-D, peraluminous magmas in the Hercynian of the Pyrenees.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R. L. 1982. Cordilleran metamorphic core complexes—from Arizona to southern Canada. ANN REV EARTH PLANET SCI 10, 129154.Google Scholar
Baker, B. H. 1963. Geology and mineral resources of the Seychelles Archipelago. MEM GEOL SURV KENYA 3, 1140.Google Scholar
Bickle, M. J., Wickham, S. M., Chapman, H. J. & Taylor, H. P. Jr., 1988. A strontium, neodymium, and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs massif, Pyrenees, France. CONTRIB MINERAL PETROL (in press).Google Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173174.Google Scholar
Christiansen, R. L. 1983. Yellowstone magmatic evolution: Its bearing on understanding large-volume explosive volcanism. In Boyd, F. R. (ed.) Explosive Volcanism, 8495. Washington D.C.: National Academy of Sciences.Google Scholar
Cole, D. R. & Ohmoto, H. 1986. Kinetics of isotopic exchange at elevated temperatures and pressures. In Valley, J. W., Taylor, H. P. Jr. & O'Neil, J. R. (eds) Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America. REV MINERAL 16, 4190.Google Scholar
Condomines, M., Gronvold, K., Hooker, P. J., Muehlenbachs, K., O'Nions, R. K., Oskarsson, N. & Oxburgh, E. R. 1983. Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. EARTH PLANET SCI LETT 66, 125136.CrossRefGoogle Scholar
Criss, R. E., Ekren, E. B. & Hardyman, R. F. 1984. Casto ring zone: A 4500 km2 fossil hydrothermal system in the Challis volcanic field, central Idaho. GEOLOGY 12, 331334.2.0.CO;2>CrossRefGoogle Scholar
Criss, R. E., Gregory, R. T. & Taylor, H. P. Jr. 1987. Kinetic theory of oxyen isotope exchange between minerals and water. GEOCHIM COSMOCHIM ACTA 51, 952960.Google Scholar
Criss, R. E. & Fleck, R. J. 1987. Petrogenesis, geochronology, and hydrothermal systems in the northern Idaho batholith and adiacent areas based on 18O/16O, D/H, 87Sr/86Sr, K–Ar, and 40Ar/39Ar studies. US GEOL SURV PROF PAP 1436, Chap 6, 95137.Google Scholar
Criss, R. E. & Taylor, H. P. Jr., 1983. An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith. BULL GEOL SOC AM 94, 640663.Google Scholar
Criss, R. E. & Taylor, H. P. Jr. 1986. Meteoric-hydrothermal systems. In High Temperature Geological Processes. Mineralogical Society of America. REV MINERAL 16, 373424.Google Scholar
Dilles, J. H. 1987. Petrology of the Yerington batholith, Nevada: Evidence for evolution of porphyry copper ore fluids. ECON GEOL 82, 17501789.Google Scholar
Doe, B. R., Leeman, W. P., Christiansen, R. L. & Hedge, C. E. 1982. Lead and strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau volcanic field. J GEOPHYS RES 87, 47854806.Google Scholar
Early, T. O. & Silver, L. T. 1973. Rb-Sr isotope systematics in the Peninsular Ranges batholith of southern and Baja California (abstract). EOS, TRANS AM GEOPHYS UNION 54, 494.Google Scholar
Eaton, G. P. 1982. The Basin and Range Province: Origin and tectonic significance. ANN REV EARTH PLANET SCI 10, 409440.Google Scholar
Eslinger, E. V. & Savin, S. M. 1973. Oxygen isotope geothermometry of the burial metamorphic rocks of the Precambrian Belt Supergroup, Glacier National Park, Montana. BULL GEOL SOC AM 84, 25492560.2.0.CO;2>CrossRefGoogle Scholar
Farmer, G. L. & DePaolo, D. J. 1983. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure 1. Nd and Sr isotopic studies in the geocline of the northern Great Basin. J GEOPHYS RES 88, 33793401.CrossRefGoogle Scholar
Fleck, R. J. & Criss, R. E. 1985. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. CONTRIB MINERAL PETROL 90, 291308.Google Scholar
Forester, R. W. & Taylor, H. P. Jr. 1977. 18O/16O, D/H and 13C/12C studies of the Tertiary igneous complex of Skye, Scotland. AM J SCI 277, 136177.CrossRefGoogle Scholar
Friedman, I., Lipman, P., Obradovich, J. D., Gleason, J. D. & Christiansen, R. L. 1974. Meteoric water in magmas. SCIENCE 184, 10691072.Google Scholar
Giletti, B. J. 1986. Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. EARTH PLANET SCI LETT 77, 218228.Google Scholar
Giletti, B. J., Semet, M. P. & Yund, R. A. 1978. Studies in diffusion—III. Oxygen in Feldspars: an ion microprobe determination. GEOCHIM COSMOCHIM ACTA 42, 4557.Google Scholar
Giletti, B. J. & Yund, R. A. 1984. Oxygen diffusion in quartz. J GEOPHYS RES 89, 40394046.Google Scholar
Gregory, R. T., Criss, R. E. & Taylor, H. P. Jr. 1988. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. CHEM GEOL (in press).CrossRefGoogle Scholar
Gregory, R. T. & Taylor, H. P. Jr., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for 18O-buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J GEOPHYS RES 86, 27372755.Google Scholar
Gromet, L. P. & Silver, L. T. 1986. REE variations across the Peninsular Ranges batholith: Implications for batholithic petrogenesis and crustal growth in magmatic arcs. J PETROL 28, 75125.CrossRefGoogle Scholar
Hattori, K. & Muehlenbachs, K. 1982. Oxygen isotope ratios of the Icelandic crust. J GEOPHYS RES 87, 65596565.CrossRefGoogle Scholar
Hietanen, A. 1962. Metasomatic metamorphism in western Clearwater County, Idaho. US GEOL SURV PROF PAP 344–A, 1116.Google Scholar
Hietanen, A. 1984. Geology along the northwest border zone of the Idaho batholith, northern Idaho. BULL US GEOL SURV 1608, 117.Google Scholar
Hildreth, W., Christiansen, R. L. & O'Neil, J. R. 1984. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J GEOPHYS RES 89, 83398369.Google Scholar
Hill, R. I., Silver, L. T. & Taylor, H. P. Jr., 1986. Coupled Sr-O isotope variations as an indicator of source heterogeneity of the Northern Peninsular Ranges Batholith. CONTRIB MINERAL PETROL 92, 351361.Google Scholar
Hoefs, J. & Emmerman, R. 1983. The oxygen isotopic composition of Hercynian granites and pre-Hercynian gneisses from the Schwarczwald, SW Germany. CONTRIB MINERAL PETROL 83, 320329.CrossRefGoogle Scholar
Kistler, R. W., Ghent, E. D. & O'Neil, J. R. 1981. Petrogenesis of garnet two-mica granites in the Ruby Mountains, Nevada. J GEOPHYS RES 86, 1059110606.CrossRefGoogle Scholar
Kistler, R. W. & Peterman, Z. E. 1978. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks. US GEOL SURVEY PROF PAP 1071, 117.Google Scholar
Lang, H. M. & Rice, J. M. 1985. Metamorphism of pelitic rocks in the Snow Peak area, northern Idaho: sequence of events and regional implications. BULL GEOL SOC AM 96, 731736.2.0.CO;2>CrossRefGoogle Scholar
Larson, P. B. & Taylor, H. P. Jr., 1986. 18O/16O ratios in ash-flow tuffs and lavas erupted from the central Nevada caldera complex and the central San Juan caldera complex, Colorado. CONTRIB MINERAL PETROL 92, 146156.Google Scholar
Lee, D. E., Friedman, I. & Gleason, J. D. 1981a. Map showing the oxygen isotope composition of granitoid rocks of the Basin-Range province. US GEOL SURV MISC FIELD STUDIES MAP MF–130.Google Scholar
Lee, D. E., Kistler, R. W., Friedman, I. & von, Loenen R. E. 1981b. Two-mica granites of northeastern Nevada. J GEOPHYS RES 86, 1060710616.Google Scholar
Lipman, P. W. 1971. Iron-titanium oxide phenocrysts in compositionally zoned ash-flow sheets from southern Nevada. J GEOL 79, 438456.CrossRefGoogle Scholar
Lipman, P. W. & Friedman, I. 1975. Interaction of meteoric water with magma: An oxygen-isotope study of ash-flow sheets from southern Nevada. BULL GEOL SOC AM 86, 695702.Google Scholar
Magaritz, M. & Taylor, H. P. Jr., 1976. 18O/16O and D/H studies along a 500 km traverse across the Coast Range batholith and its country rocks, central British Columbia. CAN J EARTH SCI 13, (11), 15141536.Google Scholar
Magaritz, M. & Taylor, H. P. Jr., 1981. Low 18O migmatites and schists from the tectonic contact zone between Hercynian (= Variscan) granites and the older gneissic core complex of the Black Forest (Schwarzwald), West Germany (Abstract) GEOL SOC AM ABSTR PROG 13, 501.Google Scholar
Magaritz, M. & Taylor, H. P. Jr., 1986. Oxygen-18/Oxygen-16 and D/H studies of plutonic granitic and metamorphic rocks across the Cordilleran batholiths of southern British Columbia. J GEOPHYS RES 91, B2, 21932217.Google Scholar
Masi, U., O'Niel, J. R. & Kistler, R. W. 1981. Stable isotope systematics in Mesozoic granites of central and northern California and Southwestern Oregon. CONTRIB MINERAL PETROL 76, 116126.Google Scholar
McCulloch, M. T., Gregory, R. T., Wasserburg, G. J. & Taylor, H. P. Jr., 1981. Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section: Evidence from the Samail ophiolite. J GEOPHYS RES 86, 27212735.Google Scholar
Mehnert, K. R. 1968. Migmatites. Amsterdam: Elsevier.Google Scholar
Michard-Vitrac, A., Albarede, F., Dupuis, C., & Taylor, H. P. Jr., 1980. The genesis of Variscan (Hercynian) plutonic rocks: inferences from Sr, Pb, and O studies on the Maladeta igneous complex, Central Pyrenees, Spain. CONTRIB MINERAL PETROL 72, 5772.Google Scholar
Michot, J. & Deutsch, S. 1976. Seychelles, Microcontinent or not? (Abstract). 4th European Colloq. of Geochron. Cosmochron. and Isotope Geol., 68.Google Scholar
Miller, J. A. & Mudie, J. D. 1961. K-Ar age determinations on granite from the Island of Mahe in the Seychelles Archipelago. NATURE 193, 11741175.Google Scholar
Muehlenbachs, K. 1973. The oxygen isotope geochemistry of siliceous volcanic rocks from Iceland. CARNEGIE INST WASHINGTON YEARB 72, 593597.Google Scholar
Muehlenbachs, K., Anderson, A. T. & Sigvaldason, G. E. 1974. Low-18O basalts from Iceland. GEOCHIM COSMOCHIM ACTA 38, 577588.CrossRefGoogle Scholar
Norton, D. & Knight, J. 1977. Transport phenomena in hydrothermal systems: Cooling plutons. AM J SCI 277, 937981.Google Scholar
Norton, D. & Taylor, H. P. Jr., 1979. Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: An analysis of the Skaergaard intrusion. J PETROL 20, 421486.CrossRefGoogle Scholar
Peterman, Z. E., Hedge, C. F., Coleman, R. G. & Snaveley, P. D. 1967. 87Sr/86Sr ratio in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magmas in orogenic belts. EARTH PLANET SCI LETT 2, 433439.Google Scholar
Sheppard, S. M. F. 1986. Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eurasia, and oceanic islands. In Valley, J. W., Taylor, H. P. Jr., & O'Neil, J. R. (eds) Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America. REV MINERAL 16, 319371.Google Scholar
Shieh, Y. N. & Schwarcz, H. P. 1977. An estimate of the oxygen isotope composition of a large segment of the Canadian shield in northwestern Ontario. CAN J EARTH SCI 14, 927931.CrossRefGoogle Scholar
Shieh, Y. N. & Taylor, H. P. Jr., 1969. Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa Range, Nevada and other areas. CONTRIB MINERAL PETROL 20, 306356.Google Scholar
Silver, L. T., Early, R. O. & Anderson, T. H. 1975. Petrological, geochemical and geochronological asymmetries of the Peninsular Ranges batholith (Abstract). GEOL SOC AM ABSTR PROG 7, 375376.Google Scholar
Silver, L. T., Taylor, H. P. Jr., & Chappell, B. W. 1979. Some petrological, geochemical, and geochronological observations of the Peninsular Ranges batholith near the international border of the U.S.A. and Mexico. In Abbott, P. L. & Todd, V. R. (eds) Mesozoic Crystalline Rocks. GEOL SOC AM ANN MEETING GUIDEB, 83110.Google Scholar
Silver, L. T. & Chappell, B. W. 1988. The Peninsular Ranges Batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. TRANS R SOC EDINBURGH EARTH SCI 79, 105121.Google Scholar
Silver, L. T. & Early, T. O. 1977. Rubidium-strontium fractionation domains in the Peninsular Ranges batholith and their implications for magmatic arc evolution (Abstract). EOS, TRANS AM GEOPHYS UNION 58, 532.Google Scholar
Simmons, E. C. & Hedge, C. E. 1978. Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt. CONTRIB MINERAL PETROL 67, 379396.Google Scholar
Sinha, A. K. & Davis, T. E. 1970. Geochemistry of Franciscan volcanic and sedimentary rocks from California. CARNEGIE INST WASHINGTON YEARB 69, 394400.Google Scholar
Solomon, G. C., Dilles, J. H., Criss, R. E. & Taylor, H. P. Jr., 1983. 18O/16O and D/H characteristics of the Ann-Mason porphyry copper deposit, Yerington, Nevada. GEOL SOC AM ABSTR PROG 15, 277.Google Scholar
Solomon, G. C. & Taylor, H. P. Jr., 1981. The geographic distribution of δ18O values in Mesozoic and early Cenozoic granitic rocks of the southwestern North American cordillera (Abstract). GEOL SOC AM ABSTR PROG 13, 558.Google Scholar
Solomon, G. C. & Taylor, H. P. Jr., 1988. Oxygen isotope studies of igneous rocks in the Northern Great Basin, Nevada and Utah (in prep).Google Scholar
Stewart, J. H. 1978. Basin-Range structure in western North America. GEOL SOC AM MEM 152, 1131.Google Scholar
Stuckless, J. S. & O'Neil, J. R. 1973. Petrogenesis of the Superstition—Superior volcanic area as inferred from strontium and oxygen isotope studies. BULL GEOL SOC AM 84, 19871997.Google Scholar
Taylor, B. E. & O'Neil, J. R. 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. CONTRIB MINERAL PETROL 63, 149.Google Scholar
Taylor, H. P. Jr., 1968. The oxygen isotope geochemistry of igneous rocks. CONTRIB MINERAL PETROL 19, 171.Google Scholar
Taylor, H. P. Jr., 1974a. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. ECON GEOL 69, 843883.CrossRefGoogle Scholar
Taylor, H. P. Jr., 1974b. A low-18O, Late Precambrian granite batholith in the Seychelles Islands, Indian Ocean: Evidence for formation of 18O-depleted magmas and interaction with ancient meteoric ground waters. (Abstract) GEOL SOC AM ABSTR PROG 6, 981982.Google Scholar
Taylor, H. P. Jr., 1977. Water/rock interactions and the origin of H2O in granitic batholiths. J GEOL SOC LONDON 133, 509558.Google Scholar
Taylor, H. P. Jr., 1986. Igneous rocks: II. Isotopic case studies of circumpacific magmatism. In Valley, J. W., Taylor, H. P. Jr., & O'Neil, J. R. (eds) Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America. REV MINERAL 16, 273317.Google Scholar
Taylor, H. P. Jr., 1987. Comparison of hydrothermal systems in layered gabbros and granites, and the origin of low-18O magmas. In Mysen, B. O. (ed.) Magmatic Processes: Physiochemical Principles, GEOCHEM SOC SPEC PUBL 1, 337357.Google Scholar
Taylor, H. P. Jr, Magaritz, M. & Wickham, S. M. 1988. Oxygen isotope evidence for deep circulation of meteoric ground waters and their bearing on the genesis of hydrothermal-anatectic granites in the Schwarzwald, SW Germany (in prep).Google Scholar
Taylor, H. P. Jr., & Forester, R. W. 1979. An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: A description of a 55-m.y. old fossil hydrothermal system. J PETROL 20, 355419.CrossRefGoogle Scholar
Taylor, H. P. Jr., & Magaritz, M. 1978. Oxygen and hydrogen isotope studies of the Cordilleran batholiths of western North America. In Robinson, B. W. (ed.) Stable Isotopes in the Earth Sciences, DSIR BULL 220, 151173. Wellington: New Zealand Dept. of Scientific and Ind. Res.Google Scholar
Taylor, H. P. Jr., & Sheppard, S. M. F. 1986. Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In Valley, J. W., Taylor, H. P. Jr. & O'Neil, J. R. (eds) Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America. REV MINERAL 16, 227271.Google Scholar
Taylor, H. P. Jr., & Silver, L. T. 1978. Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. In Zartman, R. E. (ed.) Short Papers of 4th Int'l. Conf. Geochronology, Cosmochronology, Isotope Geology. US GEOL SURV OPEN FILE REP 78–701, 423426.Google Scholar
Turi, B. and Taylor, H. P. Jr., 1971. 18O/16O ratios of the Johnny Lyon granodiorite and Texas Canyon quartz monzonite plutons, Arizona, and their contact aureoles. CONTRIB MINERAL PETROL 32, 138146.CrossRefGoogle Scholar
Wasserburg, G. J., Craig, H., Menard, H. W., Engel, A. E. J. & Engel, C. G. 1964. Age and composition of a Bounty Island granite and age of a Seychelles Islands granite. J GEOL 71, 785789.Google Scholar
Wickham, S. M. 1987. Crustal anatexis and granite petrogenesis during low pressure regional metamorphism; the Trois Seigneurs Massif, Pyrenees, France. J PETROL 28, 127169.Google Scholar
Wickham, S. M. & Taylor, H. P. Jr., & Snoke, A. W. 1987. Fluid-rock-melt interaction in metamorphic core complexes—a stable isotopic study of the Ruby Mountains-East Humboldt Range, Nevada (Abstract). GEOL SOC AM ABSTR PROG 19, 463.Google Scholar
Wickham, S. M. & Oxburgh, E. R. 1985. Continental rifts as a setting for regional metamorphism. NATURE 318, 330333.Google Scholar
Wickham, S. M. & Taylor, H. P. Jr., 1985. Stable isotope evidence for large-scale seawater infiltration in a regional metamorphic terrane: the Trois Seigneurs Massif, Pyrenees, France. CONTRIB MINERAL PETROL 91, 122137.CrossRefGoogle Scholar
Wickham, S. M. & Taylor, H. P. Jr., 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. CONTRIB MINERAL PETROL 95, 255268.Google Scholar
Yund, R. A. & Anderson, T. F. 1978. The effect of fluid pressure on oxygen isotope exchange between feldspar and water. GEOCHIM COSMOCHIM ACTA 42, 235239.Google Scholar
Zartman, R. E. 1974. Lead isotopic provinces in the Cordillera of the western United States and their geologic significance. ECON GEOL 69, 792–434.Google Scholar
Zoback, M. L., Anderson, R. E. & Thompson, G. A. 1981. Cenozoic evolution of the state of stress and style of tectonism of the Basin and Range province of the western United States. PHILOS TRANS R SOC LONDON A300, 407434.Google Scholar