Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T07:26:27.954Z Has data issue: false hasContentIssue false

A new terrestrial millipede fauna of earliest Carboniferous (Tournaisian) age from southeastern Scotland helps fill ‘Romer's Gap'

Published online by Cambridge University Press:  16 July 2018

Andrew J. Ross*
Affiliation:
Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK. [email protected]
Gregory D. Edgecombe
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. Email: [email protected]
Neil D. L. Clark
Affiliation:
The Hunterian, University of Glasgow, Glasgow G12 8QQ, UK. Email: [email protected]
Carys E. Bennett
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK. Email: [email protected]
Vicen Carrió
Affiliation:
Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK. [email protected]
Rubén Contreras-Izquierdo
Affiliation:
Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK. [email protected]
Bill Crighton
Affiliation:
Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK. [email protected]
*
*Corresponding authors

Abstract

A diverse millipede (diplopod) fauna has been recovered from the earliest Carboniferous (Tournaisian) Ballagan Formation of the Scottish Borders, discovered by the late Stan Wood. The material is generally fragmentary; however, six different taxa are present based on seven specimens. Only one displays enough characters for formal description and is named Woodesmus sheari Ross, Edgecombe & Clark gen. & sp. nov. The absence of paranota justifies the erection of Woodesmidae fam. nov. within the Archipolypoda. The diverse fauna supports the theory that an apparent lack of terrestrial animal fossils from ‘Romer's Gap' was due to a lack of collecting and suitable deposits, rather than to low oxygen levels as previously suggested.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

4. References

Almond, J. E. 1985. The Silurian–Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society, London, Series B 309, 227237.Google Scholar
Anderson, J. S., Smithson, T., Mansky, C. F., Meyer, T. & Clack, J. 2015. A Diverse Tetrapod Fauna at the Base of ‘Romer's Gap'. PLoS ONE 10(4), e0125446. doi:10.1371/journal.pone.0125446, 127.Google Scholar
Andrée, K. 1913. Weiteres über das carbonische Arthrostraken-Genus Arthropleura Jordan. Palaeontographica 60, 295310.Google Scholar
Attems, C. G. 1926. Myriopoda. Handbuch der Zoologie. Vol. 4. Berlin: W. De Gruyter. 402 pp.Google Scholar
Bennett, C. E., Kearsey, T. I., Davies, S. J., Millward, D., Clack, J. A., Smithson, T. R. & Marshall, J. E. A. 2016. Early Mississippian sandy siltstones preserve rare vertebrate fossils in seasonal flooding episodes. Sedimentology 63(6), 16771700.Google Scholar
Brade-Birks, S. G. 1923. Notes on Myriapoda, xxviii. Kampecaris tuberculata, n.sp., from the Old Red Sandstone of Ayrshire. Proceedings of the Royal Physical Society of Edinburgh 20(6), 277280.Google Scholar
Briggs, D. E. G., Rolfe, W. D. I. & Brannan, J. 1979. A giant myriapod trail from the Namurian of Arran, Scotland. Palaeontology 22(2), 273291.Google Scholar
Cater, J. M. L., Briggs, D. E. G. & Clarkson, E. N. K. 1989. Shrimp-bearing sedimentary successions in the Lower Carboniferous (Dinantian) Cementstone and Oil Shale Groups of northern Britain. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 515.Google Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology & Evolution 1(2), 111.Google Scholar
Clough, C. T., Hinxman, L. W., Wilson, J. S. G., Crampton, C. B., Wright, W. B., Bailey, E. B., Anderson, E. M., Carruthers, R. G., Grabham, G. W., Flett, J. S., Lee, G. W., MacGregor, M. & Dinham, C. H. 1925. The Geology of the Glasgow District. 2nd Ed. Memoirs of the Geological Survey, Scotland. 299 pp.Google Scholar
Gervais, M. P. 1844. Études sur les Myriapodes. Annales des Sciences Naturelles, Zoologie, Ser. 3 2, 5180.Google Scholar
Hall, I. H. S., Browne, M. A. E. & Forsyth, I. H. 1998. Geology of the Glasgow district, Memoir for 1:50 000 Geological Sheet 30E (Scotland). British Geological Survey. 117 pp.Google Scholar
Hunt, A. P., Milàn, J., Lucas, S. G. & Spielmann, J. A. (eds) 2012. Vertebrate Coprolites. New Mexico Museum of Natural History & Science, Bulletin 57. 387 pp.Google Scholar
Jordan, H. & von Meyer, H. 1856. Ueber die Crustacean der Steinkohlenformation von Saarbrücken. Palaeontographica 4, 115.Google Scholar
Kearsey, T. I., Bennett, C. E., Millward, D. Davies, S. J., Gowing, C. J. B., Kemp, S. J., Leng, M. J., Marshall, J. E. A. & Browne, M. A. E. 2016. The terrestrial landscapes of tetrapod evolution in earliest Carboniferous seasonal wetlands of SE Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 457, 5269.Google Scholar
Latreille, P. A. 1802-03. Histoire Naturelle, générale et particulière des Crustacés et des Insectes. Vol. 2. 380 pp. Paris: F. Dufart.Google Scholar
Lerner, A., Mansky, C. F. & Lucas, S. G. 2013. A possible diplopod from the Lower Mississippian (Tournaisian) Horton Bluff Formation, Blue Beach, Nova Scotia, Canada. In Lucas, S. G., DiMichele, W. A., Barrick, J. E., Schneider, J. W. & Spielmann, J. A. (eds) The Carboniferous–Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60, 212213. Albuquerque: New Mexico Museum of Natural History & Science. 465 pp.Google Scholar
Mansky, C. F. & Lucas, S. G. 2013. Romer's Gap revisited: continental assemblages and ichno-assemblages from the basal Carboniferous of Blue Beach, Nova Scotia, Canada. In Lucas, S. G., DiMichele, W. A., Barrick, J. E., Schneider, J. W. & Spielmann, J. A. (eds) The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60, 244273. Albuquerque: New Mexico Museum of Natural History & Science. 465 pp.Google Scholar
Mesibov, R. 2014. The Australian millipede Dicranogonus pix Jeekel, 1982 (Diplopoda, Polydesmida, Paradoxosomatidae): a species with and without paranota. ZooKeys 454, 2939.Google Scholar
Peach, B. N. 1882. On some fossil myriapods from the Lower Old Red Sandstone of Forfarshire. Proceedings of the Royal Physical Society of Edinburgh 7(1), 177188.Google Scholar
Peach, B. N. 1899. On some new myriapods from the Palaeozoic rocks of Scotland. Proceedings of the Royal Physical Society of Edinburgh 14, 113126.Google Scholar
Pearson, P. N. 1992. Walking traces of the giant myriapod Arthropleura from the Strathclyde Group (Lower Carboniferous) of Fife. Scottish Journal of Geology 28(2), 127133.Google Scholar
Pocock, R. I. 1887. On the classification of the Diplopoda. Annals and Magazine of Natural History Ser. 5 20, 283295.Google Scholar
RolfeW. I. & Ingham, J. K. W. I. & Ingham, J. K. 1967. Limb structure, affinity and diet of the Carboniferous ‘centipede' Arthropleura. Scottish Journal of Geology 3(1), 118124.Google Scholar
Ross, A. J. 2018. Fossil Insects, Arthropods and Amber: Preface. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107 (for 2016), 7378.Google Scholar
Scudder, S. H. 1869. On the fossil myriapods of the Coal formations of Nova Scotia and England. Quarterly Journal of the Geological Society of London 25, 441.Google Scholar
Scudder, S. H. 1873. On the Carboniferous myriapods preserved in the sigillarian stumps of Nova Scotia. Memoirs of the Boston Society of Natural History 2(2), 231239.Google Scholar
Scudder, S. H. 1882. Archipolypoda, a subordinal type of spined myriapods from the Carboniferous Formation. Memoirs of the Boston Society of Natural History 3(5), 143182.Google Scholar
Shear, W. A. 1994. Myriapodous arthropods from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84 (for 1993), 309316.Google Scholar
Shear, W. A. 1998. The fossil record and evolution of the Myriapoda. In Fortey, R. A. & Thomas, R. H. (eds) Arthropod relationships. Systematics Association Special Volume 55, 211219. London: Chapman & Hall. xii+383 pp.Google Scholar
Shear, W. A. & Edgecombe, G. D. 2010. The geological record and phylogeny of the Myriapoda. Arthropod Structure & Development 39, 174190.Google Scholar
Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap. Proceedings of the National Academy of Science (USA) 109(12), 45324537.Google Scholar
Suarez, S. E., Brookfield, M. E., Catlos, E. J. & Stöckli, D. F. 2017. The supposed oldest-recorded air-breathing land animal is early Devonian, not late Silurian in age. PloS One 12(6), e0179262.Google Scholar
TrewinN. H., Gurr, P. R., Jones, R. B. & Gavin, P. N. H., Gurr, P. R., Jones, R. B. & Gavin, P. 2012. The biota, depositional environment and age of the Old Red Sandstone of the island of Kerrera, Scotland. Scottish Journal of Geology 48(2), 7790.Google Scholar
Ward, P., Labandeira, C., Laurin, M. & Berner, R. A. 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Science (USA) 103(45), 1681816822.Google Scholar
Wilson, H. M. 2005. Zosterogrammida, a new order of millipedes from the Middle Silurian of Scotland and the Upper Carboniferous of Euramerica. Palaeontology 48(5), 11011110.Google Scholar
Wilson, H. M. 2006. Juliformian millipedes from the Lower Devonian of Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic. Journal of Paleontology 80(4), 638649.Google Scholar
Wilson, H. M., Daeschler, E. B. & Desbiens, S. 2005. New flat-backed archipolypodan millipedes from the Upper Devonian of North America. Journal of Paleontology 79(4), 738744.Google Scholar
Wilson, H. M. & Anderson, L. I. 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. Journal of Paleontology 78(1), 169184.Google Scholar
Wilson, H. M. & Hannibal, J. T. 2005. Taxonomy and trunk-ring architecture of pleurojulid millipedes (Diplopoda: Chilognatha: Pleurojulida) from the Pennsylvanian of Europe and North America. Journal of Paleontology 79(6), 11051119.Google Scholar
Woodward, H. 1866. Notes on some fossil Crustacea, and a chilognathous myriapod, from the Coal Measures of the west of Scotland. Transactions of the Geological Society of Glasgow 2, 234247.Google Scholar
Woodward, H. 1871. On Euphoberia brownii, H. Woodw., a new species of myriapod from the Coal-Measures of the west of Scotland. Geological Magazine 8, 102104.Google Scholar