Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T11:48:57.129Z Has data issue: false hasContentIssue false

New approaches to crustal evolution studies and the origin of granitic rocks: what can the Lu-Hf and Re-Os isotope systems tell us?

Published online by Cambridge University Press:  03 November 2011

Clark M. Johnson
Affiliation:
Clark M. Johnson, Department of Geology and Geophysics, University of Wisconsin, Madison. WI 53706, U.S.A.
Steven B. Shirey
Affiliation:
Steven B. Shirey, Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington. DC 20015., U.S.A.
Karin M. Barovich
Affiliation:
Karin M. Barovich, Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, U.S.A.

Abstract:

The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.

Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J.&Luck, J.-M. 1980. Osmium isotopes as petrogenetic and geological tracers. EARTH PLANET SCI LETT 48, 148–54.CrossRefGoogle Scholar
Anderson, J. L. 1983. Proterozoic anorogenic granite plutonism of North America. GEOL SOC AM MEM 161, 133–54.Google Scholar
Anderson, J. L.&Bender, E. E. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. LITHOS 23, 1952.CrossRefGoogle Scholar
Barnes, S.-J., Naldrett, A. J.&Gorton, M. P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. CHEM GEOL 53, 303323CrossRefGoogle Scholar
Barovich, K. M. 1991. Behavior of Lu-Hf, Sm-Nd and Rb-Sr isotopic systems during processes affecting continental crust. Ph.D. Thesis. Univ. Arizona-Tucson.Google Scholar
Barovich, K. M.&Patchett, P. J. 1992. Behavior of isotopic systematics during deformation and metamorphism: a Hf, Nd and Sr isotopic study of mylonitized granite. CONTRIB MINERAL PETROL 109, 386–93.CrossRefGoogle Scholar
Barovich, K. M., Beard, B. L., Cappel, J. B., Johnson, C. M., Kyser, T. K.&Morgan, B. E. 1995. A chemical method for hafnium separations from high-Ti whole-rock and zircon samples. CHEM GEOL 121, 303–8.CrossRefGoogle Scholar
Bateman, P. C.&Chappell, B. W. 1979. Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. GEOL SOC AM BULL 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Beard, B. L.&Johnson, C. M. 1993. Hf isotope composition of late Cenozoic basaltic rocks from NW Colorado, U.S.A.: new constraints on mantle enrichment processes. EARTH PLANET SCI LETT 119, 95409.CrossRefGoogle Scholar
Beard, J. S.&Lofgren, G. E. 1989. Effects of waer on the composition of partial melts of greenstone and amphibolite. SCIENCE 244, 195–7.CrossRefGoogle Scholar
Beard, J. S.&Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstone and amphibolites. J PETROL 32, 365401.CrossRefGoogle Scholar
Beard, J. S., Abitz, R. J.&Lofgren, G. E. 1993. Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. CONTRIB MINERAL PETROL 115, 88102.CrossRefGoogle Scholar
Beard, J. S., Lofgren, G. E., Sinha, A. K.&Tollo, R. P. 1994. Partial melting of apatite-bearing charnockite, granulite, and diorite: melt compositions, restite mineralogy, and petrologic implications. J GEOPHYS RES 99, 21591603.Google Scholar
Ben-Othman, D., Polvé, M.&Allègre, C. J. 1984. Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. NATURE 307, 510–5.CrossRefGoogle Scholar
Bennett, V. C.&DePaolo, D. J. 1987. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. GEOL SOC AM BULL 99, 674–85.2.0.CO;2>CrossRefGoogle Scholar
Birck, J. L.&Allègre, C. J. 1994. Contrasting Re/Os magmatic fractionation in planetary basalts. EARTH PLANET SCI LETT 124, 139–48.CrossRefGoogle Scholar
Brown, M., Rushmer, T.&Sawyer, E. W. 1995. Introduction to special issue: mechanisms and consequences of melt segregation from crustal protoliths. J GEOPHYS RES 100, 15551–63.Google Scholar
Carlson, R. W.&Irving, A. J. 1994. Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. EARTH PLANET SCI LETT 126, 457–72.CrossRefGoogle Scholar
Carroll, M. R.&Rutherford, M. J. 1985. Sulfide and sulfate saturation in hydrous silicate melts. J GEOPHYS RES 90, 601–12.Google Scholar
Chauvel, C., Hofmann, A. W.&Vidal, P. 1992. HIMU-EM: the French Polynesian connection. EARTH PLANET SCI LETT 110, 99119.CrossRefGoogle Scholar
Chen, J. H.&Moore, J. G. 1982. Uranium-lead isotopic ages from the Sierra Nevada batholith, California. J GEOPHYS RES 87, 4761–84.CrossRefGoogle Scholar
Clemens, J. D.&Wall, V. J. 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. CAN MINERAL 19, 111–31.Google Scholar
Corfu, F.&Noble, S. R. 1992. Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: evidence from zircon Hf isotope analyses using a single filament technique. GEOCHIM COSMOCHIM ACTA 56, 2081–97.CrossRefGoogle Scholar
DePaolo, D. J. 1981a. A neodymium and strontium isotopic study of Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86, 10470–88.CrossRefGoogle Scholar
DePaolo, D. J. 1981b. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. NATURE 291, 193–6.CrossRefGoogle Scholar
DePaolo, D. J. 1988a. Neodymium isotope geochemistry. Berlin: Springer-Verlag.CrossRefGoogle Scholar
DePaolo, D. J. 1988b. Age dependence of the composition of continental crust: evidence from Nd isotopic variations in granitic rocks. EARTH PLANET SCI LETT 90, 263–71.CrossRefGoogle Scholar
DePaolo, D. J.. Linn, A. M.&Schubert, G. 1991. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and applications to the southwestern United States. J GEOPHYS RES 96, 2071–88.CrossRefGoogle Scholar
Dickin, A. P., Richardson, J. M., Crocket, J. H., McNutt, R. H.&Peredery, W. V. 1992. Osmium isotope evidence for a crustal origin of platinum group elements in the Sudbury nickel ore, Ontario, Canada. GEOCHIM COSMOCHIM ACTA 56, 3531–7.CrossRefGoogle Scholar
Domenick, M. A.. Kistler, R. W., Dodge, F. C. W.&Tatsumoto, M. 1983. Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. GEOL SOC AM BULL 94, 713–9.2.0.CO;2>CrossRefGoogle Scholar
Ellam, R. M.. Carlson, R. W.&Shirey, S. B. 1992. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. NATURE 359, 718–21.CrossRefGoogle Scholar
Esser, B. K.&Turekian, K. K. 1988. Accretion rate of extraterrestrial particles determined from osmium isotope systematics of Pacific pelagic clay and manganese nodules. GEOCHIM COSMOCHIM ACTA 52, 1383–8.CrossRefGoogle Scholar
Esser, B. K.&Turekian, K. K. 1993. The osmium isotopic composition of the continental crust. GEOCHIM COSMOCHIM ACTA 57, 3093–104.CrossRefGoogle Scholar
Farmer, G. L.&DePaolo, D. J. 1983. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure. 1. Nd and Sr isotopic studies in the geocline of the northern Great Basin. J GEOPHYS RES 88, 3379–401.CrossRefGoogle Scholar
Farmer, G. L.&DePaolo, D. J. 1984. Origin of Mesozoic and Tertiary-granite in the western United States and implications for pre-Mesozoic crustal structure, 2, Nd and Sr isotopic studies of unmineralized and Cu- and Mo-mineralized granite in the Precambrian craton. J GEOPHYS RES 89, 10141–60.Google Scholar
Fleet, M. E., Tronnes, R. G.&Stone, W. E. 1991. Partitioning of platinum group elements in the Fe-O-S system to 11 GPa and their fractionation in the mantle and meteorites. J GEOPHYS RES 96, 21949–58.Google Scholar
Fleet, M. E., Chryssoulis, S. L., Stone, W. E.&Weisener, C. G. 1993. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt. CONTRIB MINERAL PETROL 115, 3644.CrossRefGoogle Scholar
Frost, C. D.&O'Nions, R. K. 1985. Caledonian magma genesis and crustal recycling. J PETROL 26, 515–44.CrossRefGoogle Scholar
Gill, J. 1981. Orogenic andesites and plate tectonics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Green, D. H.&Lambert, I. B. 1965. Experimental crystallization of anhydrous granite at high pressures and temperatures. J GEOPHYS RES 70, 5259–69.CrossRefGoogle Scholar
Gruau, G., Chavel, C., Arndt, N. T.&Cornichet, J. 1990. Aluminum depletion in komatiites and garnet fractionation in the early Archean mantle: hafnium isotopic constraints. GEOCHIM COSMOCHIM ACTA 54, 3095–101.CrossRefGoogle Scholar
Hamilton, W. 1978. Mesozoic tectonics of the western United States, In Howell, D. G., McDougall, K. A. (eds) Mesozoic Paleogeography of the Western United States. SOC ECON PALEONTOL MINERAL PACIFIC COAST PALEOGEOGR SYMP 2, 3370.Google Scholar
Hart, S. R.&Kinloch, E. D. 1989. Osmium isotope systematics in Witwatersrand and Bushveld ore deposits. ECON GEOL 84, 1651–5.CrossRefGoogle Scholar
Hart, S. R., Gerlach, D. C.&White, W. M. 1986. A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. GEOCHIM COSMOCHIM ACTA 50, 1551–7.CrossRefGoogle Scholar
Hattori, K.&Hart, S. R. 1991. Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle. EARTH PLANET SCI LETT 107, 499514.CrossRefGoogle Scholar
Hattori, K., Cabri, L. J.&Hart, S. R. 1991. Osmium isotope ratios of PGM grains associated with the Freetown Layered Complex, Sierra Leone, and their origin. CONTRIB MINERAL PETROL 109, 10–8.CrossRefGoogle Scholar
Hauri, E. H.&Hart, S. R. 1993. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. EARTH PLANET SCI LETT 114, 353–71.CrossRefGoogle Scholar
Hertogen, J., Janssens, M.-J.&Palme, H. 1980. Trace elements in ocean ridge basalt glasses: implications for fractionations during mantle evolution and petrogenesis. GEOCHIM COSMOCHIM ACTA 44, 2125–43.CrossRefGoogle Scholar
Hoffman, P. F. 1989. Speculations on Laurentia's first gigayear (2·0 to 1·0 Ga). GEOLOGY 17, 135–8.2.3.CO;2>CrossRefGoogle Scholar
Horan, M. F., Morgan, J. W., Walker, R. J.&Grossman, J. N. 1992. Rhenium–osmium isotope constraints on the age of iron meteorites. SCIENCE 255, 1118–21.CrossRefGoogle ScholarPubMed
Horan, M. F., Morgan, J. W.. Grauch, R. I.. Coveney, R. M. Jr,Murowchick, J. B.&Hulbert, L. J. 1994. Rhenium and osmium isotopes in black shales and Ni–Mo–PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China. GEOCHIM COSMOCHIM ACTA 58, 257–65.CrossRefGoogle Scholar
Johnson, C. M. 1993. Mesozoic and Cenozoic contributions to crustal growth in the southwestern United States. EARTH PLANET SCI LETT 118, 7589.CrossRefGoogle Scholar
Johnson, C. M.&Beard, B. L. 1993. Evidence from hafnium isotopes for ancient sub-oceanic mantle beneath the Rio Grande rift. NATURE 362, 441–4.CrossRefGoogle Scholar
Kinny, P., Compston, W.&Williams, I. S. 1991. A reconnaissance ion probe study of Hafnium isotopes in zircons. GEOCHIM COSMOCHIM ACTA 55, 849–61.CrossRefGoogle Scholar
Kistler, R. W.&Peterman, Z. E. 1973. Variations in Sr, Rb, K. Na and initial Sr87/Sr86 in Mesozoic granitic rocks and intruded wall rocks in central California. GEOL SOC AM BULL 84, 3489–512.2.0.CO;2>CrossRefGoogle Scholar
Kistler, R. W.. Chappell, B. W., Peck, D. L.&Bateman, P. C. 1986. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California. CONTRIB MINERAL PETROL 94, 205–20.CrossRefGoogle Scholar
Koeberl, C.&Shirey, S. B. 1993. Detection of a meteoritic component in Ivory Coast tektites with rhenium-osmium isotopes. SCIENCE 261, 595–8.CrossRefGoogle ScholarPubMed
Koeberl, C.Reimold, W. U.&Shirey, S. B. 1994. Saltpan impact crater, South Africa: geochemistry of target rocks, breccias, and impact glasses, and osmium isotope systematics. GEOCHIM COSMOCHIM ACTA 58, 2893–910.CrossRefGoogle Scholar
Lambert, D. D., Morgan, J. W., Walker, R. J., Shirey, S. B., Carlson, R. W.. Zientek, M. L.&Koski, M. S. 1989. Rhenium-osmium and samarium-neodymium isotopic systematics of the Stillwater Complex. SCIENCE 244, 1169–74.CrossRefGoogle ScholarPubMed
Lambert, D. D., Walker, R. J., Morgan, J. W., Shirey, S. B., Carlson, R. W., Zientek, M. L., Lipin, B. R., Koski, M. S.&Cooper, R. L. 1994. Re-Os and Sm-Nd isotope geochemistry of the Stillwater Complex, Montana: implications for the petrogenesis of the J-M Reef. J PETROL 35, 1717–53.CrossRefGoogle Scholar
Lambert, D. D., Shirey, S. B.&Bergman, S. C. 1995. Proterozoic lithospheric mantle source for the Prairie Creek lamproites: Re-Os and Sm-Nd isotopic evidence. GEOLOGY 23, 273–6.2.3.CO;2>CrossRefGoogle Scholar
Le Breton, N.&Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. CONTRIB MINERAL PETROL 99, 226–37.CrossRefGoogle Scholar
Luck, J.-M.&Allègre, C. J. 1983. 187Re–187Os systematics in meteorites and cosmochemical consequences. NATURE 302, 130–2.CrossRefGoogle Scholar
Luck, J.-M.&Allègre, C. J. 1984. 187Re–187Os investigation in sulfide from Cape Smith komatiite. EARTH PLANET SCI LETT 68, 205–8.CrossRefGoogle Scholar
Luck, J.-M.&Allègre, C. J. 1991. Osmium isotopes in ophiolites. EARTH PLANET SCI LETT 107, 406–15.CrossRefGoogle Scholar
Luck, J.-M., Birck, J.-L.&Allègre, C. J. 1980. 187Re–187Os systematics in meteorites: early chronology of the Solar System and age of the galaxy. NATURE 283, 256–9.CrossRefGoogle Scholar
Marcantonio, F., Zindler, A., Reisberg, L.&Mathez, E. A. 1993. Re—Os isotopic systematics in chromitites from the Stillwater Complex, Montana, U.S.A. GEOCHIM COSMOCHIM ACTA 57, 4029–37.CrossRefGoogle Scholar
Marcantonio, F., Reisberg, L., Zindler, A., Wyman, D.&Hulbert, L. 1994. An isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia Terrane: evidence for hydrothermal mobilization of rhenium and osmium. GEOCHIM COSMOCHIM ACTA 58, 1007–17.CrossRefGoogle Scholar
Martin, C. E. 1989. Re-Os isotopic investigation of the Stillwater Complex, Montana. EARTH PLANET SCI LETT 93, 336–44.CrossRefGoogle Scholar
Martin, C. E., Carlson, R. W.. Shirey, S. B., Frey, F. A.&Chen, C.-Y. 1994. Os isotopic variation in basalts from Haleakala Volcano, Maui, Hawaii: a record of magmatic processes in oceanic mantle and crust. EARTH PLANET SCI LETT 128, 287301.CrossRefGoogle Scholar
Merrill, R. B.&Wyllie, P. J. 1975. Kaersutite and Kaersutite Eclogite from Kakanui, New Zealand—water-excess and water-deficient melting to 30 kilobars. GEOL SOC AM BULL 86, 555–70.2.0.CO;2>CrossRefGoogle Scholar
Millhollen, G. L.&Wyllie, P. J. 1974. Melting relations of brown-hornblende mylonite from St. Paul's rocks under water-saturated and water-undersaturated conditions to 30 kilobars. J GEOL 82, 589606.CrossRefGoogle Scholar
Milling, M. E. Jr,Johnson, C. M.&Barovich, K. M. 1994. Hf isotope constraints on ancient depletion and enrichment events in the mantle beneath the SW U.S.A. ICOG-8 ABSTR. USGS CIR 1107, 219.Google Scholar
Morgan, J. W. 1986. Ultramafic xenoliths: clues to Earth's late accretionary history. J GEOPHYS RES 91, 12375–87.Google Scholar
Morgan, J. W.&Lovering, J. F. 1967. Rhenium and osmium abundances in some igneous and metamorphic rocks. EARTH PLANET SCI LETT 3, 219–24.CrossRefGoogle Scholar
Morgan, J. W., Wandless, G. A., Petrie, R. K.&Irving, A. J. 1981. Composition of the Earth's upper mantle—I. siderophile trace elements in ultramafic nodules. TECTONOPHYSICS 75, 4767.CrossRefGoogle Scholar
Morgan, J. W., Walker, R. J.&Grossman, J. N. 1992. Rheniumosmium isotope systematics in meteorites I: magmatic iron meteorite groups IIAB and IIIAB. EARTH PLANET SCI LETT 108, 191202.CrossRefGoogle Scholar
Nelson, B. K.&DePaolo, D. J. 1985. Rapid production of continental crust 1·7 to 1·9 Ga ago: Nd isotopic evidence from the basement of the North American mid-continent. GEOL SOC AM BULL 96, 746–54.2.0.CO;2>CrossRefGoogle Scholar
Nyman, M. W., Karlstrom, K. E., Kirby, E.&Graubard, C. M. 1994. Mesoproterozoic contractional orogeny in western North America: evidence from ca. 1·4 Ga plutons. GEOLOGY 22, 901–4.2.3.CO;2>CrossRefGoogle Scholar
Palmer, M. R.&Turekian, K. K. 1986. 187Os/186Os in marine manganese nodules and the constraints on the crustal geochemistries of rhenium and osmium. NATURE 319, 216–20.CrossRefGoogle Scholar
Patchett, P. J. 1983a. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. GEOCHIM COSMOCHIM ACTA 47, 8191.CrossRefGoogle Scholar
Patchett, P. J. 1983b. Hafnium isotope results from mid-ocean ridges and Kerguelen. LITHOS 16, 4751.CrossRefGoogle Scholar
Patchett, P. J.&Arndt, N. T. 1986. Nd isotopes and tectonics of 1·9-1·7 Ga crustal genesis. EARTH PLANET SCI LETT 78, 328–38.Google Scholar
Patchett, P. J.&Tatsumoto, M. 1980a. Hafnium isotope variations in oceanic basalts. GEOPHYS RES LETT 7, 1077–80.CrossRefGoogle Scholar
Patchett, P. J.&Tatsumoto, M. 1980b. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. CONTRIB MINERAL PETROL 75, 263–9.CrossRefGoogle Scholar
Patchett, P. J., Kouvo, O., Hedge, C. E.&Tatsumoto, M. 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. CONTRIB MINERAL PETROL 78, 279–97.CrossRefGoogle Scholar
Patchett, P. J., White, W. M.. Feldmann, H.. Kielinczuk, S.&Hoffmann, A. W. 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. EARTH PLANET SCI LETT 69, 365–78.CrossRefGoogle Scholar
Patiño Douce, A. E. 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J GEOPHYS RES 100, 15623–39.Google Scholar
Patiño Douce, A. E.&Johnson, A. D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. CONTRIB MINERAL PETROL 107, 202–18.CrossRefGoogle Scholar
Pegram, W. J.&Allègre, C. J. 1992. Osmium-isotopic compositions from oceanic basalts. EARTH PLANET SCI LETT 111, 5968.CrossRefGoogle Scholar
Pegram, W. J.. Krishnaswami, S., Ravizza, G. E.&Turekian, K. K. 1992. The record of sea water 187Os/186Os variation through the Cenozoic. EARTH PLANET SCI LETT 113, 569–76.CrossRefGoogle Scholar
Peucker-Ehrenbrink, B., Ravizza, G.&Hofmann, A. W. 1995. The marine 187Os/186Os record of the past 80 million years. EARTH PLANET SCI LETT 130, 155–67.CrossRefGoogle Scholar
Rapp, R. P.. Watson, E. B.&Miller, C. F. 1991. Partial melting of amphibolite, eclogite and the origin of Archean trondhjemites and tonalites. PRECAMBRIAN RES 51, 125.CrossRefGoogle Scholar
Ravizza, G.&Turekian, K. K. 1989. Application of the 187Re–187Os system to black shale geochronometry. GEOCHIM COSMOCHIM ACTA 53, 3257–62.CrossRefGoogle Scholar
Ravizza, G.&Turekian, K. K. 1992. The osmium isotopic composition of organic-rich marine sediments. EARTH PLANET SCI LETT 110, 16.CrossRefGoogle Scholar
Ravizza, G., Turekian, K. K.&Hay, B. J. 1991. The geochemistry of rhenium and osmium in recent sediments from the Black Sea. GEOCHIM COSMOCHIM ACTA 55, 3741–52.CrossRefGoogle Scholar
Reisberg, L. C., Allègre, C. J.&Luck, J.-M. 1991. The Re-Os systematics of the Ronda Ultramafic complex of southern Spain. EARTH PLANET SCI LETT 105, 196213.CrossRefGoogle Scholar
Reisberg, L., Zindler, A., Marcantonio, F., White, W., Wyman, D.&Weaver, B. 1993. Os isotope systematics in ocean island basalts. EARTH PLANET SCI LETT 120, 149–67.CrossRefGoogle Scholar
Roy-Barman, M.&Allègre, C. J. 1994. 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. GEOCHIM COSMOCHIM ACTA 58, 5043–54.CrossRefGoogle Scholar
Roy-Barman, M.&Allègre, C. J. 1995. 187Os186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle. EARTH PLANET SCI LETT 129, 145–61.CrossRefGoogle Scholar
Rushmer, T. 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. CONTRIB MINERAL PETROL 107, 4159.CrossRefGoogle Scholar
Rushmer, T. 1993. Experimental high-pressure granulites: some applications to natural mafic xenolith suites and Archean granulite terranes. GEOLOGY 21, 411–4.2.3.CO;2>CrossRefGoogle Scholar
Rushmer, T. 1995. An experimental deformation study of partially molten amphibolite: application to low-melt fraction segregation. J GEOPHYS RES 100, 15681–95.Google Scholar
Rutter, M. J.&Wyllie, P. J. 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. NATURE 311, 159–60.CrossRefGoogle Scholar
Salters, V. J. M.&Hart, S. R. 1989. The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. NATURE 342, 420–2.CrossRefGoogle Scholar
Salters, V. J. M.&Hart, S. R. 1991. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. EARTH PLANET SCI LETT 104, 364–80.CrossRefGoogle Scholar
Schaltegger, U.&Corfu, F. 1992. The age and source of late Hercynian magmatism in the central Alps: evidence from precise U-Pb ages and initial Hf isotopes. CONTRIB MINERAL PETROL 111, 329–44.CrossRefGoogle Scholar
Scherer, E. E., Beard, B. L., Barovich, K. M, Johnson, C. M.&Taylor, L. A. 1995. An improved method for determining the Hf isotopic composition of Lunar basalts. ABSTR 26TH LUNAR PLANET SCI CONF, 1235–6.Google Scholar
Sekine, T., Wyllie, P. J.&Baker, D. R. 1981. Phase relationships at 30 kbar for quartz eclogite composition in CaO-MgO-Al2O3-SiO2-H2O with implications for subduction zone magmas. AM MINERAL 66, 938–50.Google Scholar
Shirey, S. B.&Walker, R. J. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. ANAL CHEM 67, 2136–41.CrossRefGoogle Scholar
Sims, P. K., Van Schmus, W. R., Schulz, K. J.&Peterman, Z. E. 1989. Tectonostratigraphic evolution of the early Proterozoic Wisconsin magmatic terranes of the Penokean Orogen. CAN J EARTH SCI 26, 2145–58.CrossRefGoogle Scholar
Skjerlie, K. P., Patiño Douce, A. E.&Johnston, A. D. 1993. Fluid absent melting of a layered crustal protolith: implications for the generation of anatectic granites. CONTRIB MINERAL PETROL 114, 365–78.CrossRefGoogle Scholar
Smith, P. E., Tatsumoto, M.&Farquhar, R. M. 1987. Zircon Lu-Hf systematics and the evolution of the Archean crust in the southern Superior Province, Canada. CONTRIB MINERAL PETROL 97, 93104.CrossRefGoogle Scholar
Stein, H. J., Morgan, J. W., Walker, R. J.&Horan, M. F. 1992. Rhenium-osmium data for sulfides and oxides from climax-type granite-molybdenum systems: Mt. Emmons, Colorado. GEOL SOC AM ABSTR PROGRAM 24, A144.Google Scholar
Stern, C. R.&Wyllie, P. J. 1978. Phase compositions through crystallization intervals in basalt-andesite-H2O at 30 kbar with implications for subduction zone magmas. AM MINERAL 634, 641–63.Google Scholar
Stille, P., Unruh, D. M.&Tatsumoto, M. 1983. Pb. Sr. Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. NATURE 304, 25–9.CrossRefGoogle Scholar
Stille, P., Unruh, D. M.&Tatsumoto, M. 1986. Pb, Sr, Nd and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. GEOCHIM COSMOCHIM ACTA 50, 2303–19.CrossRefGoogle Scholar
Stille, P., Oberhansli, R.&Wenger-Schenk, K. 1989. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres. EARTH PLANET SCI LETT 96, 209–19.CrossRefGoogle Scholar
Taylor, H. P. Jr 1968. The oxygen isotope geochemistry of igneous rocks. CONTRIB MINERAL PETROL 19, 171.CrossRefGoogle Scholar
Thorpe, R. S. 1982. Andesites, orogenic andesites and related rocks. New York: Wiley.Google Scholar
Thompson, A. B. 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. AM J SCI 282, 1567–95.CrossRefGoogle Scholar
Van Wyck, N. 1995. Oxygen and carbon isotopic constraints on the development of eclogites, Holsny, Norway and major and trace element, common Pb, Sm-Nd, and zircon geochronology constraints on petrogenesis and tectonic setting of pre- and Early Proterozoic rocks in Wisconsin. Ph.D. Thesis, Univ Wisconsin-Madison.Google Scholar
Vielzeuf, D.&Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. CONTRIB MINERAL PETROL 98, 257–76.CrossRefGoogle Scholar
Walker, R. J.&Morgan, J. W. 1989. Rhenium-osmium isotope systematics of carbonaceous chondrites. SCIENCE 243, 519–22.CrossRefGoogle ScholarPubMed
Walker, R. J., Shirey, S. B.&Stecher, O. 1988. Comparative Re-Os, Sm-Nd and Rb-Sr isotope and trace element systematics for Archean komatiite flows from Munro Township, Abitibi Belt, Ontario. EARTH PLANET SCI LETT 87, 112.CrossRefGoogle Scholar
Walker, R. J., Carlson, R. W., Shirey, S. B.&Boyd, F. R. 1989a. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. GEOCHIM COSMOCHIM ACTA 53, 1583–95.CrossRefGoogle Scholar
Walker, R. J., Shirey, S. B., Hanson, G. N., Rajamani, V.&Horan, M. F. 1989b. Re-Os, Rb-Sr, and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. GEOCHIM COSMOCHIM ACTA 53, 3005–13.CrossRefGoogle Scholar
Walker, R. J., Echeverria, L. M., Shirey, S. B.&Horan, M. F. 1991a. Re-Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle. CONTRIB MINERAL PETROL 107, 150–62.CrossRefGoogle Scholar
Walker, R. J., Morgan, J. W., Naldrett, A. J., Li, C.&Fassett, J. D. 1991b. Re-Os isotope systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. EARTH PLANET SCI LETT 105, 416–29.CrossRefGoogle Scholar
Walker, R. J., Morgan, J. W., Horan, M. F., Czamanske, G. K., Krogstad, E. J., Fedorenko, V. A.&Kunilov, V. E. 1994. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia. GEOCHIM COSMOCHIM ACTA 58, 4179–97.CrossRefGoogle Scholar
Waters, D. J. 1988. Partial melting and the formation of granulites facies assemblages in Namaqualand, South Africa. J METAMORP GEOL 6, 387404.CrossRefGoogle Scholar
White, W. M.&Patchett, P. J. 1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. EARTH PLANET SCI LETT 67, 167–85.CrossRefGoogle Scholar
White, W. M., Patchett, P. J.&Ben-Othman, D. 1986. Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. EARTH PLANET SCI LETT 79, 4654.CrossRefGoogle Scholar
Windley, J. F. 1993. Proterozoic anorogenic magmatism and its orogenic connections. J GEOL SOC LONDON 150, 3950.CrossRefGoogle Scholar
Wolf, R.&Anders, E. 1980. Moon and Earth: compositional differences inferred from siderophiles, volatiles, and alkalis in basalts. GEOCHIM COSMOCHIM ACTA 44, 2111–24.CrossRefGoogle Scholar
Woodhead, J. D. 1989. Geochemistry of the Mariana arc (western Pacific): source, composition, and processes. CHEM GEOL 76, 124.CrossRefGoogle Scholar
Zartman, R. E. 1974. Lead isotopic provinces in the Cordillera of the western United States and their geologic significance. ECON GEOL 69, 792805.CrossRefGoogle Scholar
Zartman, R. E.&Doe, B. R. 1981. Plumbotectonics—the model. TECTONOPHYSICS 75, 135–63.CrossRefGoogle Scholar
Zartman, R. E.&Haines, S. M. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—a case for bi-directional transport. GEOCHIM COSMOCHIM ACTA 52, 1327–39.CrossRefGoogle Scholar