Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T07:04:00.241Z Has data issue: false hasContentIssue false

A micrometeorite record in Ordovician Durness Group limestones, Isle of Skye

Published online by Cambridge University Press:  27 April 2016

John Parnell
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: [email protected]
Natalie Salter
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: [email protected]
Peter West
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: [email protected]

Abstract

Samples of mid-Ordovician Durness Group limestone from Skye yield micrometeorites in the magnetic fraction after dissolution in acid. The micrometeorites are concentrated in the upper part of the sequence, in the Arenig Balnakeil and Croisaphuill formations. This finding is consistent with their stratigraphic distribution determined previously in the Durness district. A single sample of contemporaneous limestones from the Highland Border Fault Zone also yielded a micrometeorite. These observations suggest an elevated flux of meteoritic matter, shortly before the greatest concentration of meteorites in the geological record in the mid-Ordovician of Sweden.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Alwmark, C., Schmitz, B. & Kirsimäe, K. 2010. The mid-Ordovician Osmussaar breccia in Estonia linked to the disruption of the L-chondrite parent body in the asteroid belt. Geological Society of America Bulletin 122, 1039–46.Google Scholar
Blanchard, M. B., Brownlee, D. E., Bunch, T. E., Hodge, P. W. & Kyte, F. T. 1980. Meteoroid ablation spheres from deep-sea sediments. Earth and Planetary Science Letters 46, 178–90.Google Scholar
Burns, J. A., Lamy, P. L. & Soter, S. 1979. Radiation forces on small particles in the Solar System. Icarus 40, 148.Google Scholar
Castellarin, A., Del Monte, M. & Frascari, F. 1974. Cosmic fallout in the ‘hard grounds’ of the Venetian region. Giornale di Geologia 39, 333–46.Google Scholar
Chapman, M. G. & Lauretta, D. 2004. Iron spherules from the Triassic–Jurassic boundary zone of the Lower Moennave, Nevada: a Preliminary Report on Possible Extraterrestrial Dust Deposits. In 32nd International Geological Congress, Florence, Scientific Sessions: Abstracts (Part 2), 1140.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631–44.Google Scholar
Cronholm, A. & Schmitz, B. 2010. Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: evidence for a global major spike in flux of L-chondritic matter. Icarus 208, 3648.Google Scholar
Curry, G. B. & Williams, A. 1984. Lower Ordovician brachiopods from the Ben Suardal Limestone Formation (Durness Group) of Skye, western Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 75, 113–33.Google Scholar
Davidson, J., Genge, M. J., Mills, A. A., Johnson, D. J. & Grady, M. M. 2007. Ancient cosmic dust from Triassic halite. Lunar and Planetary Science XXXVIII, Abstract 1545.Google Scholar
Doyle, J. L., Hopkins, T. L. & Betzer, P. R. 1976. Black magnetic spherule fallout in the eastern Gulf of Mexico. Science 194, 1157–59.Google Scholar
Dredge, I. D., Parnell, J., Lindgren, P. & Bowden, S. 2010. Elevated flux of cosmic spherules (micrometeorites) in Ordovician rocks of the Durness Group, Northwest Scotland. Scottish Journal of Geology 46, 716.Google Scholar
Duprat, J., Engrand, C., Maurette, M., Kurat, G., Gounelle, M. & Hammer, C. 2007. Micrometeorites from Central Antarctic snow: The CONCORDIA collection. Advances in Space Research 39, 605–11.Google Scholar
Emeleus, C. H. & Bell, B. R. 2005. British Regional Geology: the Paleogene volcanic districts of Scotland (Fourth edition). Keyworth, Nottingham: British Geological Survey.Google Scholar
Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. 1998. Geochemical evidence for a comet shower in the late Eocene. Science 280, 1250–53.Google Scholar
Fortey, R. A. 1992. Ordovician trilobites from the Durness Group, Northwest Scotland and their palaeobiogeography. Scottish Journal of Geology 28, 115–21.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parkes, M. A., Rushton, A. W. A. & Woodcock, N. H. 2000. A revised correlation of Ordovician rocks in the British Isles. Geological Society, London, Special Publication 24.Google Scholar
Genge, M. J. 2008. Micrometeorites and their implications for meteors. Earth Moon and Planets 102, 525–35.Google Scholar
Grachev, A. F., Korchagin, O. A., Tselmovich, V. A. & Kollmann, H. A. 2008. Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous–Paleogene boundary in the Gams section (Eastern Alps): morphology and chemical composition. Izvestiya, Physics of the Solid Earth 44, 555–69.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale. Cambridge, UK: Cambridge University Press.Google Scholar
Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. 1996. Meteoritic, asteroidal and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–91.Google Scholar
Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. 2004. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–25.Google Scholar
Heck, P. R., Schmitz, B., Baur, H. & Wieler, R. 2008. Noble gases in fossil meteorites from 470 Myr-old sediments from southern Sweden, and new evidence for the L-chondrite parent body breakup event. Meteoritics & Planetary Science, 43, 517–28.Google Scholar
Holness, M. B. 1992. Metamorphism and fluid infiltration of the calc-silicate aureole of the Beinn an Dubhaich Granite, Skye. Journal of Petrology 33, 1261–93.Google Scholar
Holroyd, J. D. 1994. The Structure and Stratigraphy of the Suardal area, Isle of Skye, north-west Scotland: an investigation of Tertiary deformation in the Skye Volcanic Complex. Unpublished PhD Thesis, University of Manchester, UK.Google Scholar
Ingham, J. K., Curry, G. B. & Williams, A. 1985. Early Ordovician Dounans Limestone fauna, Highland Border Complex, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 481513.Google Scholar
Korochatseva, E. V., Trieloff, M., Lorenz, C. A., Buykin, A. I., Ivanova, M. A., Schwarz, W. H., Hopp, J. & Jessberger, E. K. 2007. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteoritics & Planetary Science 42, 113–30.Google Scholar
Love, S. G. & Brownlee, D. E. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–53.Google Scholar
Marfaing, J., Rochette, P., Pellerey, J., Chaurand, P., Suavet, C. & Folco, L. 2008. Study of a set of micrometeorites from Antarctica using magnetic and ESR methods coupled with micro-XRF. Journal of Magnetism and Magnetic Materials 320, 1687–95.Google Scholar
Maurette, M. 2006. Micrometeorites and the Mysteries of our Origins. Berlin: Springer-Verlag. 330 pp.Google Scholar
Meier, M. M. M., Schmitz, B., Baur, H. & Wieler, R. 2010. Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone. Earth and Planetary Science Letters 290, 5463.Google Scholar
Miono, S., Nakayama, Y., Shoji, M., Tsuji, H. & Nakanishi, A. 1993. Origin of microspherules in Paleozoic–Mesozoic bedded chert estimated by PIXE analysis. Nuclear Instruments and Methods in Physics Research B75, 435–39.Google Scholar
Mutch, T. A. 1964. Volcanic ashes compared with Paleozoic salts containing extraterrestrial spherules. Journal of Geophysical Research 69, 4735–40.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W.F., Gladman, B. & Häggström, T. 2007. Express delivery of fossil meteorites from the inner asteroid belt to Sweden. Icarus 188, 400–13.Google Scholar
Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. 2009. Asteroidal source of L chondrite meteorites. Icarus 200, 698701.Google Scholar
Onoue, T., Nakamura, T., Haranosono, T., & Yasuda, C. 2011. Composition and accretion rate of fossil micrometeorites recovered in Middle Triassic deep-sea deposits. Geology, 39, 567–70.Google Scholar
Parnell, J. 2009. Global mass wasting at continental margins during Ordovician high meteorite influx. Nature Geoscience 2, 5761.Google Scholar
Patterson, D. B., Farley, K. A. & Schmitz, B. 1998. Preservation of extraterrestrial 3He in 480 Ma-old marine limestones. Earth and Planetary Science Letters 163, 315–25.Google Scholar
Prasad, M. S., Rudraswami, N. G. & Panda, D. K. 2013. Micrometeorite flux on Earth during the last ∼50,000 years. Journal of Geophysical Research 118, 2381–99.Google Scholar
Puffer, J. H., Russell, E. W. B. & Rampino, M. R. 1980. Distribution and origin of magnetite spherules in air, waters and sediments of the Greater New York City area and the North Atlantic Ocean. Journal of Sedimentary Petrology 50, 247–56.Google Scholar
Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. 1997. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 8890.Google Scholar
Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. 2001. A rain of ordinary chondritic meteorites in the early Ordovician. Earth and Planetary Science Letters 194, 115.Google Scholar
Schmitz, B., Häggström, T. & Tassinari, M. 2003. Sediment-dispersed extra-terrestrial chromite traces a major asteroid disruption event. Science 300, 961–64.Google Scholar
Stankowski, W. T. J., Katrusiak, A. & Budzianowski, A. 2006. Crystallographic variety of magnetic spherules from Pleistocene and Holocene sediments in the Northern Foreland of Morasko-Meteorite Reserve. Planetary and Space Science 54, 6070.Google Scholar
Suavet, C., Gattacceca, J., Rochette, P., Perchiazzi, N., Folco, L., Duprat, J. & Harvey, R. P. 2009. Magnetic properties of micrometeorites. Journal of Geophysical Research 114, B04102, doi:10.1029/2008JB005831.Google Scholar
Szöör, G. Y., Elkes, Z., Rozsa, P., Uzonyi, I., Simillak, J. & Kiss, A. Z. 2001. Magnetic spherules: cosmic dust or markers of a meteoritic impact? Nuclear Instruments and Methods in Physics Research B 181, 557–62.Google Scholar
Taylor, S., Lever, J. H. & Harvey, R. P. 2000. Numbers, types and compositions of an unbiased collection of cosmic spherules. Meteoritics & Planetary Science 35, 651–66.Google Scholar
Taylor, S. & Brownlee, D. E. 1991. Cosmic spherules in the geologic record. Meteoritics 26, 203–11.Google Scholar
Voldman, G. G., Genge, M. J., Albanesi, G. L., Barnes, C. R. & Ortega, G. 2013. Cosmic spherules from the Ordovician of Argentina. Geological Journal 48, 222–35.Google Scholar
Wang, K. & Chatterton, B. D. E. 1993. Microspherules in Devonian sediments: origins, geological significance and contamination problems. Canadian Journal of Earth Sciences 30, 1660–67.Google Scholar