Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T21:14:01.828Z Has data issue: false hasContentIssue false

Mercury, n-alkane and unresolved complex mixture hydrocarbon pollution in surface sediment across the rural–urban–estuarine continuum of the River Clyde, Scotland, UK

Published online by Cambridge University Press:  13 November 2018

Abstract

Surface sediments (n=85) from a 160-km river-estuarine transect of the Clyde, UK, were analysed for total mercury (Hg), saturated hydrocarbons and unresolved complex mixtures (UCMs) of hydrocarbons. Results show that sediment-Hg concentration ranges from 0.01 to 1.38mgkg–1 (mean 0.20mgkg–1) and a spatial trend in Hg-content low–high–low–high, from freshwater source, to Glasgow, to estuary, is evident. In summary, sediment-Hg content is low in the upper Clyde (mean of 0.05Hg mgkg–1), whereas sediments from the Clyde in urbanised Glasgow have higher Hg concentrations (0.04 to 1.26mgkg–1; mean 0.45mgkg–1), and the inner estuary sediments contain less Hg (mean 0.06mgkg–1). The highest mean sediment Hg (0.65mgkg–1) found in the outer estuary is attributed to historical anthropogenic activities. A significant positive Spearman correlation between Hg and total organic carbon is observed throughout the river estuary (0.86; P<0.001). Comparison with Marine Scotland guidelines suggests that no sites exceed the 1.5mgkg–1 criterion (Action Level 2); 22 fall between 0.25 and 1.5mgkg–1 dry wt. (Action Level 1) and 63 are of no immediate concern (<0.25mgkg–1 dry wt.). Saturated (n-alkane) hydrocarbons in the upper Clyde are of natural terrestrial origin. By contrast, the urbanised Glasgow reaches and outer estuary are characterised by pronounced and potentially toxic UCM concentrations in sediments (380–914mg/kg and 103–247mgkg–1, respectively), suggesting anthropogenic inputs such as biodegraded crude oil, sewage discharge and/or urban run-off.

Type
Articles
Copyright
Copyright © British Geological Survey UKRI 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Bartlett, P. D., Craig, P. J. & Morton, S. F. 1978. Total mercury and methyl mercury levels in British estuarine and marine sediments. Science of The Total Environment 10, 245251.Google Scholar
Bengtsson, G. & Picado, F. 2008. Mercury sorption to sediments: dependence on grain size, dissolved organic carbon, and suspended bacteria. Chemosphere 73, 526531.10.1016/j.chemosphere.2008.06.017Google Scholar
Beriro, D. J., Vane, C. H., Cave, M. R. & Nathanail, C. P. 2014. Effects of drying and comminution type on the quantification of polycyclic aromatic hydrocarbons (PAH) in a homogenised gasworks soil and the implications for human health risk assessment. Chemosphere 11, 396404.Google Scholar
Boehm, P. D. & Requejo, A. G. 1986. Overview of the recent sediment hydrocarbon geochemistry of Atlantic and Gulf Coast outer continental shelf environments. Estuarine and Coastal Shelf Science 23, 2958.10.1016/0272-7714(86)90084-3Google Scholar
Booth, A., Scarlett, A., Lewis, C. A., Belt, S. T. & Rowland, S. J. 2008. Unresolved complex mixtures (UCMs) of aromatic hydrocarbons: Branched alkyl indanes and branched alkyl tetralins are present in UCMs and accumulated by and toxic to, the mussel Mytilus eduli. Environmental Science & Technology 42, 81228126.Google Scholar
Brain, M. J., Kemp, A. C., Hawkes, A., Engelhart, S., Vane, C. H., Cahill, N., Hill, T. D., Engelhart, S., Donnelly, J. & Horton, B. P. 2017. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. The contribution of mechanical compression and biodegradation to compaction of salt-marsh sediments and relative sea-level reconstructions. Quaternary Science Reviews 167, 96111.Google Scholar
Bryan, G. W. & Langston, W. J. 1992. Bioavailability, accumulation and effects of heavy-metals in sediments with special reference to the United Kingdom estuaries- A review. Environmental Pollution 76, 89131.Google Scholar
Craig, P. J. & Moreton, P. A. 1986. Total mercury, methyl mercury and sulfide levels in British estuarine sediments. Water Research 20, 11111118.Google Scholar
Crutzen, P. J. & Stoermer, E. F. 2000. The ‘Anthropocene'. Global Change Newsletter 41, 1718.Google Scholar
Douglas, G. S., Bence, A. E., Prince, R. C., McMillen, S. J. & Butler, E. L. 1996. Environmental stability of selected petroleum hydrocarbon source and weathering ratio. Environmental Science & Technology 38, 39583964.Google Scholar
Eglinton, G. & Hamilton, J. 1967. Leaf epicuticular waxes. Science 156, 13221335.Google Scholar
Frysinger, G. S., Gaines, R. B., Xu, L. I. & Reddy, C. M. 2003. Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environmental Science & Technology 37, 16531662.Google Scholar
Gałuszka, A., Migaszewski, M. & Zalasiewicz, J. A. 2014. Assessing the Anthropocene with geochemical methods. In Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. A. & Snelling, A. M. (eds) A Stratigraphical Basis for the Anthropocene, 395, 221238. London: Geological Society, Special Publications.Google Scholar
Goodfellow, R. M., Cardoso, J., Eglinton, G., Dawson, J. P. & Best, G. A. 1977. A faecal sterol survey of the Clyde estuary. Marine Pollution Bulletin 8, 272276.Google Scholar
Gough, M. A., Rhead, M. M. & Rowland, S. J. 1992. Biodegradation studies of unresolved complex mixtures of hydrocarbons: model UCM hydrocarbons and the aliphatic UCM. Organic Geochemistry 18, 1722.Google Scholar
Grimalt, J. & Albaiges, J. 1987. Sources and occurrence of C12–C22 alkane distributions with even carbon number preference in sedimentary environments. Geochimica et Cosmochimica Acta 51, 13791384.10.1016/0016-7037(87)90322-XGoogle Scholar
Haitzer, M., Aiken, G. R. & Ryan, J. N. 2003. Binding of mercury (II) to aquatic humic substances: influence of pH and source of humic substances. Environmental Science & Technology 37, 24362441.10.1021/es026291oGoogle Scholar
IPCC. 2013. Summary for policymakers. In Stocker, T. F., Qin, D. & Plattner, G. K. (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC.Google Scholar
Kemp, A. C., Bernhardt, B. E., Horton, B. P., Kopp, R. E., Vane, C. H., Peltier, W. R., Hawkes, A. D., Donnelly, J. P., Parnell, A. & Cahill, N. 2014. Late Holocene sea- and land-level change on the U.S. Southeastern Atlantic (USA) coast. Marine Geology 357, 90100.Google Scholar
Kemp, A. C., Hawkes, A. D., Donnelly, J. P., Vane, C. H., Horton, B. P., Hill, T. D., Anisfield, S. H., Parnell, A. C. & Cahill, N. 2015. Relative sea-level change in Connecticut (USA), during the last 2200 years. Earth and Planetary Science Letters 428, 217229.Google Scholar
Khan, S. N., Vane, C. H., Horton, B. P., Hillier, C., Riding, J. B. & Kendrick, C. 2015. The application of δ13C, TOC, C/N geochemistry to reconstruct Holocene relative sea levels and paleoenvironments in the Thames Estuary, UK. Journal of Quaternary Science 30, 417433.Google Scholar
Lamb, A. L., Gonzalez, S., Huddart, D., Metcalfe, S. E., Vane, C. H. & Pike, A. W. G. 2009. Tepexpan Palaeoindian site, Basin of Mexico: multi-proxy evidence for environmental change during the Late Pleistocene–late Holocene. Quaternary Science Reviews 28, 20002016.Google Scholar
Langston, W. J., Chesman, B. S., Burt, T. R., Hawkins, S. J., Readman, J. & Worsfold, P. 2003. Characterisation of the South West European Marine Sites: the Severn Estuary pSAC, SPA. Marine Biological Association Occasional Publication 13, 206 pp.Google Scholar
Lopes dos Santos, R. A. & Vane, C. H. 2016. Signatures of tetraether lipids reveal anthropogenic overprinting of natural organic matter in sediments of the Thames Estuary, UK. Organic Geochemistry 93, 6876.Google Scholar
Mao, D., Weghe, H. V. D., Lookman, R., Vanermen, G., Brucker, N. D. & Diels, L. 2009. Resolving the unresolved complex mixture in motor oils using high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography. Fuel 88, 312318.Google Scholar
Marine Scotland. 2011. Guidance for the sampling and analysis of sediment and dredged material to be submitted in support of applications for sea disposal of dredged material. The Scottish Government, 11 pp.Google Scholar
Meyers, P. A. 1997. Organic geochemical proxies of palaeoceanographic, paleolimnoligic, and paleoclimatic processes. Organic Geochemistry 27, 213250.Google Scholar
Newell, A. J., Sorensen, J. P. R., Chambers, J. E., Wilkinson, P. B., Uhlemann, S., Roberts, C., Gooddy, D. C., Vane, C. H. & Binley, A. 2015. River and floodplain response to Late Pleistocene and Holocene environmental change in a chalkland headwater of the River Thames: the Lambourn of southern England. Proceedings of the Geologists' Association 126, 217229.Google Scholar
Newell, A. J., Vane, C. H., Sorensen, J. P. R., Gooddy, D. C. & Moss-Hayes, V. 2016. Long-term Holocene groundwater fluctuations in a chalk catchment: evidence from Rock-Eval pyrolysis of riparian peats. Hydrological Processes 30, 45564576.Google Scholar
OSPAR. 2004. Background document on mercury and organic mercury compounds. Paris: OSPAR Commission, European Union, 32 pp.Google Scholar
R Core Team. 2016. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Readman, J. W., Preston, M. R. & Mantoura, R. F. C. 1986. An integrated technique to quantify sewage, oil and PAH pollution in estuarine and coastal environments. Marine Pollution Bulletin 17, 298308.Google Scholar
Readman, J. W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J.-P., Catinni, C. & Mee, L. D. 2002. Petroleum contamination of the Black Sea. Marine Pollution Bulletin 44, 298308.10.1016/S0025-326X(01)00189-8Google Scholar
Rosemary, R. T. & McInerney, F. A. 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochemica acta 117, 161179.Google Scholar
Scarlett, A., Galloway, T. S. & Rowland, S. J. 2007. Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediment. Journal of Soils Sediments 3, 17.Google Scholar
Stout, S. A. & Wang, Z. 2007. Oil spill environmental forensics: finger printing and source identification. Amsterdam: Elsevier, 537 pp.Google Scholar
Sutton, P. A., Lewis, C. A. & Rowland, S. J. 2005. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography. Organic Geochemistry 36, 963970.Google Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L. & Nicholls, R. J. 2009. Sinking deltas due to human activities. Nature Geoscience 2, 681686.Google Scholar
Vane, C. H., Harrison, I. & Kim, A. W. 2007. Assessment of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface sediments of the Inner Clyde Estuary, UK. Marine Pollution Bulletin 54, 13011306.10.1016/j.marpolbul.2007.04.005Google Scholar
Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P. & Horton, B. P. 2008. Status of organic pollutants in surface sediments of Barnegat Bay-Little Egg Harbor Estuary, New Jersey, USA. Marine Pollution Bulletin 56, 18021808.Google Scholar
Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P. & Hong, K. 2009a. Organic and metal contamination in surface mangrove sediments of south China. Marine Pollution Bulletin 58, 134144.Google Scholar
Vane, C. H., Jones, D. G. & Lister, T. R. 2009b. Mercury contamination in surface sediments and sediment cores of the Mersey Estuary, UK. Marine Pollution Bulletin 58, 928946.Google Scholar
Vane, C. H., Ma, Y. J., Chen, S. J. & Mai, B. X. 2010. Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK. Environmental Geochemistry and Health 32, 1321.Google Scholar
Vane, C. H., Chenery, S. R., Harrison, I., Kim, A. W., Moss-Hayes, V. M. & Jones, D. G. 2011. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, 207/206Pb, total petroleum hydrocarbons, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records. Philosophical Transactions of the Royal Society A 369, 10851111.Google Scholar
Vane, C. H., Beriro, D. J. & Turner, G. H. 2015. Rise and fall of mercury (Hg) pollution in sediment cores of the Thames Estuary, London, UK. Earth and Environmental Science Transactions of Royal Society of Edinburgh 105, 285296.Google Scholar
Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. & Snelling, A. M. 2014. A stratigraphical basis for the Anthropocene? In Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. & Snelling, A. M. (eds) A Stratigraphical Basis for the Anthropocene, 395, 123. London: Geological Society, Special Publications.Google Scholar
White, H. K., Xu, L., Lima, A. L. C., Eglinton, T. I. & Reedy, C. M. 2005. Abundance, composition, and vertical transport of PAHs in Marsh Sediments. Environmental Science & Technology 39, 82738280.Google Scholar
Zalasiewicz, J., Williams, M., Smith, A., Barry, T. L., Bown, P. R., Rawson, P., Brenchley, P., Cantrill, D., Coe, A. E., Cope, J. C. W., Gale, A., Gibbard, P. L., Gregory, F. J., Hounslow, M., Knox, R., Powell, P., Waters, C., Marshall, J., Oates, M. & Stone, P. 2008. Are we now living in the Anthropocene? GSA Today 18, 48.Google Scholar
Zalasiewicz, J., Williams, M., Fortey, R. A., Smith, A. G., Barry, T. L., Coe, A. L., Bown, P. R., Gale, A., Gibbard, P. L., Gregory, F. J., Hounslow, M. W., Kerr, A. C., Pearson, P., Knox, R., Powell, J., Waters, C., Marshall, J., Oates, M., Rawson, P. & Stone, P. 2011. Stratigraphy of the Anthropocene. Philosophical Transactions of the Royal Society A 369, 10361055.Google Scholar