Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T08:02:17.934Z Has data issue: false hasContentIssue false

Lower jaws, lower tetrapods–a review based on the Devonian genus Acanthostega

Published online by Cambridge University Press:  03 November 2011

Per Erik Ahlberg
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
Jennifer A. Clack
Affiliation:
University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, UK

Abstract

The lower jaw of the Devonian tetrapod Acanthostega is described for the first time. Redescriptions are provided for the lower jaws of the elpistostegid Panderichthys, the Devonian tetrapods Elginerpeton, Obruchevichthys, Metaxygnathus, Ventastega and Ichthyostega, and the Carboniferous tetrapods Crassigyrinus, Megalocephalus and Gephyrostegus. The character distri- butions thus revealed differ considerably from previous accounts, particularly in the wide distribution of certain primitive characters. Meckelian ossification in the middle part of the jaw is widespread among Devonian tetrapods, being demonstrably absent only in Acanthostega. Among Carboniferous tetrapods, a tooth-bearing parasymphysial plate is shown to be present in Crassigyrinus and Megalocephalus (having already been demonstrated by other authors in Whatcheeria and Greererpeton). A phylogenetic analysis of 26 early tetrapods including all the aforementioned genera, scored for 51 lower jaw characters, produces at least 2,500 equally parsimonious trees. However, the lack of resolution lies largely in a big top end polychotomy containing anthracosaurs, temnospondyls, seymouriamorphs, microsaurs and a nectridean-amniote clade. Below this polycho- tomy, which may correspond approximately to the tetrapod crown group, there is a well-resolved stem-group containing, in descending order, Megalocephalus, Greererpeton, Crassigyrinus, (jaws associated with) Tulerpeton, Whatcheeria, Acanthostega, Metaxygnathus, Ichthyostega, Ventastega and Metaxygnathus (unresolved), an Elginerpeton-Obruchevichthys clade, and Panderichthys. This conflicts with recently published phylogenies by Coates and Lebedev & Coates, which place Tulerpeton and all post-Devonian tetrapods in the amphibian or amniote branches of the tetrapod crown group.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. E. 1991a. Tetrapod or near-tetrapod fossils from the Upper Devonian of Scotland. Nature 354, 298301.CrossRefGoogle Scholar
Ahlberg, P. E. 1991b. A re-examination of sarcopterygian interrelation- ships, with special reference to the Porolepiformes. Zoological Journal of the Linnean Society 103, 241–87.CrossRefGoogle Scholar
Ahlberg, P. E. 1992. A new holoptychilid porolepiform fish from the Upper Frasnian of Elgin, Scotland. Palaeontology 35, 813–28.Google Scholar
Ahlberg, P. E. 1995. Elginerpeton pancheni and the earliest tetrapod clade. Nature 373, 4205.CrossRefGoogle Scholar
Ahlberg, P. E. 1998. Postcranial stem tetrapod remains from the Devonian of Scat Craig, Morayshirc, Scotland. Zoological Journal of the Linnean Society 122, 99141.CrossRefGoogle Scholar
Ahlberg, P. E., Luksevics, E. & Lebedev, O. 1994. The first tetrapod finds from the Devonian (Upper Famennian) of Latvia. Philosophical Transactions of the Roval Society of London B343, 303–28.CrossRefGoogle Scholar
Ahlberg, P. E. & Milner, A. R. 1994. The origin and early diversification of tetrapods. Nature 368, 507–14.CrossRefGoogle Scholar
Alexeev, A. A., Lebedev, O. A., Barskov, I. S., Barskova, M. I., Kononova, L. I. & Chizhova, V. A. 1994. On the stratigraphic position of the Famennian and Tournaisian fossil vertebrate beds in Andreyevka, Tula Region, Central Russia. Proceedings of the Geological Association 105, 4152.Google Scholar
Andrews, S. M. 1985. Rhizodont crossopterygian fish from the Dinantian of Foulden, Berwickshire, Scotland, with a re-evaluation of this group. Transactions of the Royal Society of Edinburgh 76, 6795.CrossRefGoogle Scholar
Ax, P. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis. New York: Wiley.Google Scholar
Beaumont, E. H. 1977. Cranial morphology of the Loxommatidae (Amphibia: Labyrinthodontia). Philosophical Transactions of the Royal Society of London B280, 29–101.Google Scholar
Beerbower, J. R. 1963. Morphology, paleoecology and phylogeny of the Permo-Pennsylvanian amphibian Diploceraspis. Bulletin of the Museum of Comparative Zoology, Harvard 130, 31108.Google Scholar
Bendix-Almgreen, S. E., Clack, J. A. & Olsen, H. 1988. Upper Devonian and Permian vertebrates collected in 1987 around Kejser Franz Joseph Fjord, central East Greenland. Rapport, Gronlands Geologiske Undersogelse 140, 95102.CrossRefGoogle Scholar
Bendix-Almgreen, S. E., Clack, J. A. & Olsen, H. 1990. Upper Devonian tetrapod palaeoecology in the light of new discoveries in East Greenland. Terra Nova 2, 131–7.CrossRefGoogle Scholar
Bolt, J. R. 1996. Cranial kinesis in Mississippian colosteid amphibians. Journal of Vertebrate Paleontology 16(3) Abstracts, 23A.Google Scholar
Bossy, K. V. H. 1976. Morphology, paleoecology, and evolutionary relationships of the Pennsylvanian urocordylid nectrideans (Subclass Lepospondyli, Class Amphibia). Ph.D, Yale University.Google Scholar
Campbell, K. S. W. & Bell, M. W. 1977. A primitive amphibian from the Late Devonian of New South Wales. Alcheringa 1, 369–81.CrossRefGoogle Scholar
Carroll, R. L. 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society of London B257, 267308.Google Scholar
Carroll, R. L. 1995. Problems of the phylogenetic analysis of Paleozoic choanates. In Arsenault, M., Lelievre, H. & Janvier, P. (eds) Studies on early vertebrates ( Vllth International Symposium, Pare de Miguasha, Quebec). Bulletin du Museum National d'Histoire Naturelle Paris (Ser. 4) 17 (C), 389446.Google Scholar
Carroll, R. L. & Gaskill, P. 1978. The Order Microsauria. Memoirs of the American Philosophical Society 126, 1211.Google Scholar
Carroll, R. L. & Holmes, R. 1980. The skull and jaw musculature as guides to the ancestry of salamanders. Zoological Journal of the Linnean Society. 68, 140.CrossRefGoogle Scholar
Chang, M.-M. 1991. Head exoskeleton and shoulder girdle of Youngolepis. In Chang, M.-M., Liu, Y. H. & Zhang, G. R. (eds) Early vertebrates and related problems of evolutionary biology, 355–78. Beijing: Science Press.Google Scholar
Chang, M.-M. & Yu, X. 1996. Position of Middle Devonian osteolepids and the assumed monophyly of Osteolepiformes. Journal of Vertebrate Paleontology 16(3) Abstracts, 27A.Google Scholar
Clack, J. A. 1987. Pholiderpeton scutigerum Huxley, an amphibian from the Yorkshire Coal measures. Philosophical Transactions of the Royal Society of London B318, 1107.Google Scholar
Clack, J. A. 1988. New material of the early tetrapod Acanthostega from the Upper Devonian of East Greenland. Palaeontology 31, 699724.Google Scholar
Clack, J. A. 1989. Discovery of the earliest tetrapod stapes. Nature 342, 425–30.CrossRefGoogle ScholarPubMed
Clack, J. A. 1994a. Acanthostega gunnari, a Devonian tetrapod from Greenland: the snout, palate and ventral parts of the braincase. Meddelelser om Gronland Geoscience 31, 124.Google Scholar
Clack, J. A. 1994b. Earliest known tetrapod braincase and the evolution of the stapes and fenestra ovalis. Nature 369, 392–4.CrossRefGoogle Scholar
Clack, J. A. 1994c. Silvanerpeton miripedes, a new anthracosauroid from the Visean of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 369–76.CrossRefGoogle Scholar
Clack, J. A. 1998a. The Scottish Carboniferous tetrapod Crassigyrinus scoticus (Lydekker)–cranial anatomy and relationships. Transactions of the Royal Society of Edinburgh: Earth Sciences 88, 127–42.CrossRefGoogle Scholar
Clack, J. A. 1998b. A new Early Carboniferous tetrapod with a melange of crown-group characters. Nature 394, 66–9.CrossRefGoogle Scholar
Clack, J. A. & Milner, A. R. 1993. Platyrhinops from the Upper Carboniferous of Linton and Nyfany and the family Amphibamidae (Amphibia: Temnospondyli). In Heidtke, U. (ed.) New research on Permo-Carboniferous faunas. Pollichia-Buch 29, 185–91.Google Scholar
Cloutier, R. & Ahlberg, P. E. 1996. Morphology, characters and the interrelationships of basal sarcopterygians. In Stiassny, M. L. J., Parenti, L. & Johnson, G. D. (eds) Interrelationships of Fishes, 445–79. San Diego: Academic Press.CrossRefGoogle Scholar
Coates, M. I. 1991. New palaeontological contributions to limb ontogeny and phylogeny. In Hinchliffe, J. R., Hurle, J. M. & Summerbell, D. (eds) Developmental patterning of the vertebrate limb, 325–37. New York: Plenum.CrossRefGoogle Scholar
Coates, M.I. 1994. The origin of vertebrate limbs. In Akam, M., Holland, P., Ingham, P. & Wray, G. (eds) The evolution of developmental mechanisms, 169–80. Development (Supp.) 1994.Google Scholar
Coates, M. I. 1996. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 363421.CrossRefGoogle Scholar
Coates, M. I. & Clack, J. A. 1990. Polydactyly in the earliest known tetrapod limbs. Nature 347, 66–9.CrossRefGoogle Scholar
Coates, M. I. & Clack, J. A. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature 352, 234–6.CrossRefGoogle Scholar
Daeschler, E. B., Shubin, N. H., Thomson, K. S. & Amaral, W. W. 1994. A Devonian tetrapod from North America. Science 265, 639–42.CrossRefGoogle ScholarPubMed
DeQueiroz, K. & Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 23, 449–80.Google Scholar
Dilkes, D. W. 1990. A new trematopsid amphibian (Temnospondyli: Dissorophoidea) from the Lower Permian of Texas. Journal of Vertebrate Paleontology 10, 222–43.CrossRefGoogle Scholar
Forey, P. L. 1993. Therapsids and transformation series. Nature 361, 596–7.CrossRefGoogle Scholar
Forey, P. L., Gardiner, B. G. & Patterson, C. 1991. The lungfish, the coelacanth and the cow revisited. In Schultze, H.-P. & Trueb, L. (eds) Origins of the Higher Groups of Tetrapods: controversy and consensus, 145–92. Ithaca: Cornell Publishing Associates.Google Scholar
Fox, R. C., Campbell, K. S. W., Barwick, R. E. & Long, J. A. 1995. A new osteolepiform fish from the lower Carboniferous Raymond Formation, Drummond Basin, Queensland. Memoirs of the Queensland Museum 38, 97221.Google Scholar
Gaffney, E. S. 1979. Tetrapod monophyly: a phylogenetic analysis. Bulletin of the Carnegie Museum of Natural History 13, 92105.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum of Natural History 37, 173427.Google Scholar
Godfrey, S. J. 1989. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton burkemorani. Philosophical Transactions of the Royal Society of London B323, 75–133.Google Scholar
Godfrey, S. J. & Holmes, R. 1995. The Pennsylvanian temnospondyl Cochleosaurus florensis Rieppel, from the lycopsid stump flora at Florence, Nova Scotia. Breviora 500, 125.Google Scholar
Goodrich, E. S. 1930. Studies on the structure and development of vertebrates. London: Macmillan & Co.CrossRefGoogle Scholar
Gorr, T., Kleinschmidt, T. & Fricke, H. 1991. Close tetrapod relationships of the coelacanth Latimeria indicated by haemo-globin sequences. Nature 351, 394–5.CrossRefGoogle Scholar
Gross, W. 1941. Uber den Unterkiefer einiger devonischer Crossopterygier. Abhandlungen der Preussischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse 1941, 151.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1989. A geologic time scale 1989. Cambridge: Cambridge University Press.Google Scholar
Heaton, M. J. 1979. Cranial anatomy of primitive captorhinid reptiles from the Late Pennsylvanian and Early Permian Oklahoma and Texas. Bulletin of the Oklahoma Geological Survey 127, 180.Google Scholar
Hedges, S. B., Hass, C. A. & Maxson, L. R. 1993. Relations of fish and tetrapods. Nature 363, 501–2.CrossRefGoogle ScholarPubMed
Holmes, R. 1984. The Carboniferous amphibian Proterogyrinus scheelei Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society of London B306, 431527.Google Scholar
Holmes, R. 1989. The skull and axial skeleton of the Lower Permian anthracosauroid amphibian Archeria crassidisca Cope. Palaeontographica 207, 161206.Google Scholar
Jarvik, E. 1948. On the morphology and taxonomy of the middle Devonian osteolepid fishes of Scotland. Kungliga Svenska Vetenskapakademiens Handlingar 25, 1301.Google Scholar
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians with descriptions of a new stegocephalian and a new crossopterygian from the Upper Devonian of East Greenland. Meddelelser om Gronland 114, 190.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandiea n. sp. Meddelelser om Gronland 187, 1307.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of the Vertebrates, vol. 1. London: Academic Press.Google Scholar
Jarvik, E. 1996. The Devonian tetrapod Ichthyostega. Fossils and Strata 40, 1213.CrossRefGoogle Scholar
Jessen, H. 1980. Lower Devonian Porolepiformes from the Canadian Arctic with special reference to Powichthys thorsteinssoni Jessen. Palaeontographica A167, 180214.Google Scholar
Johanson, Z. & Ahlberg, P. E. 1997. A new tristichopterid (Osteolepiformes: Sarcopterygii) from the Mandagery Sandstone (Late Devonian, Famennian) near Canowindra, NSW, Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences 88, 3968.CrossRefGoogle Scholar
Kemp, T. S. 1982. Mammal-like reptiles and the origin of mammals. London: Academic Press.Google Scholar
Klembara, J. 1997. The cranial anatomy of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Philosophical Transactions of the Royal Society of London B352, 257302.CrossRefGoogle Scholar
Kontges, G. & Lumsden, A. 1996. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–42.CrossRefGoogle ScholarPubMed
Laurin, M. & Reisz, R. R. 1997. A new perspective on tetrapod phylogeny. In Sumida, S. S. & Martin, K. L. M. (eds) Amniote origins: completing the transition to land, 959. London: Academic Press.CrossRefGoogle Scholar
Lebedev, O. A. 1984. The first find of a Devonian tetrapod in the USSR. Doklady Akademia Nauk SSSR 278, 1470–3 (in Russian).Google Scholar
Lebedev, O. A. 1995. Morphology of a new osteolepidid fish from Russia. Bulletin du Museum National d'Histoire Naturelle Paris 17(C)l-4, 287341.Google Scholar
Lebedev, O. A. & Clack, J. A. 1993. Upper Devonian tetrapods from Andreyevka, Tula Region, Russia. Palaeontology 36, 721–34.Google Scholar
Lebedev, O. A. & Coates, M. I. 1995. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zoological Journal of the Linnean Society 113, 307–48.CrossRefGoogle Scholar
Lombard, R. E. & Bolt, J. R. 1995. A new primitive tetrapod Whatcheeria deltae from the Lower Carboniferous of Iowa. Palaeontology 38, 471–94.Google Scholar
Long, J. A. 1987. Late Devonian fishes from the Gogo Formation, Western Australia–new discoveries. Search 18, 203–5.Google Scholar
Long, J. A. 1989. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. Journal of Vertebrate Paleontology 9, 117.CrossRefGoogle Scholar
Long, J. A., Barwick, R. E. & Campbell, K. S. W. 1997. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Records of the Western Australian Museum, Supplement 53, 189.Google Scholar
Mark-Kurik, E. 1993. Givetian and the base of the Frasnian in the Baltic area. In Grigelis, A., Jankauskas, T.-R. & Mertiniene, R. (eds) Abstracts of the Second Baltic Stratigraphic Conference, 57. Vilnius: Baltic Stratigraphic Association.Google Scholar
Meyer, A. & Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. Journal of Molecular Evolution 31, 359–64.CrossRefGoogle ScholarPubMed
Milner, A. C. & Lindsay, W. 1998. Postcranial remains of Baphetes and their bearing on the relationships of the Baphetidae ( = Loxommatidae). Zoological Journal of the Linnean Society 122, 211–35.CrossRefGoogle Scholar
Milner, A. R., Smithson, T. R., Milner, A. C., Coates, M. I. & Rolfe, W. D. I. 1986. The search for early tetrapods. Modern Geology 10, 128.Google Scholar
Milner, A. R. & Sequeira, S. E. K. 1994. The temnospondyl amphibians from East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 331–61.CrossRefGoogle Scholar
Panchen, A. L. 1985. On the amphibian Crassigyrinus scoticus Watson from the Carboniferous of Scotland. Philosophical Transactions of the Royal Society of London B309, 505–68.Google Scholar
Panchen, A. L. & Smithson, T. R. 1987. Character diagnosis, fossils, and the origin of tetrapods. Biological Reviews 62, 341438.CrossRefGoogle Scholar
Panchen, A. L. & Smithson, T. R. 1988. The relationships of early tetrapods. In Benton, M. J. (ed.) The phylogeny and classification of the tetrapods, 1, 132. Oxford: Clarendon Press.Google Scholar
Patterson, C. 1994. Bony fishes. In Spencer, R. S. (ed.) Major features of vertebrate evolution (Short Courses in Palaeontology 7), 5784. Knoxville, Tennessee: Paleontological Society.Google Scholar
Rolfe, W. D. I., Durant, G. P., Baird, W. J., Chaplin, C., Paton, R. L. & Reekie, R. J. 1994. The East Kirkton Limestone, Visean, of West Lothian, Scotland: introduction and stratigraphy. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 177–88.CrossRefGoogle Scholar
Romer, A. S. & Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Paper 28, 1538.CrossRefGoogle Scholar
Säve-Soderbergh, G. 1932. Preliminary note on Devonian stegocephalians from East Greenland. Meddelelser om Gronland 94, 1107.Google Scholar
Schultze, H.-P. 1969. Die Faltenzahne der rhipidistiiden Crossopterygier, der Tetrapoden und der Actinopterygier-gattung Lepisosteus. Palaeontographica Italica 65, (N. S. 35), 59137.Google Scholar
Schultze, H.-P. 1987. Dipnoans as sarcopterygians. In Bemis, W. W., Burggren, W. W. & Kemp, N. E. (eds) The biology and evolution of lungjishes. Journal of Morphology (Supp. I) 1986, 3974.Google Scholar
Schultze, H.-P. 1996. The elpistostegid fish Elpistostege, the closest the Miguasha fauna comes to a tetrapod. In Schultze, H.-P. & Cloutier, R. (eds) Devonian fishes and plants of Miguasha, Quebec, Canada. Munich: Verlag Dr Friedrich Pfeil.Google Scholar
Schultze, H.-P. & Arsenault, M. 1985. The panderichthyid fish Elpistostege: a close relative of tetrapods? Palaeontology 28, 293310.Google Scholar
Smithson, T. R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). Zoological Journal of the Linnean Society 76, 2990.CrossRefGoogle Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnean Society 85, 317410.CrossRefGoogle Scholar
Smithson, T. R. 1986. A new anthracosaur amphibian from the Carboniferous of Scotland. Palaeontology 29, 603–28.Google Scholar
Smithson, T. R. 1994. Eldeceeon rolfei, a new reptiliomorph from the Visean of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 377–82.CrossRefGoogle Scholar
Smithson, T. R., Carroll, R. L., Panchen, A. L. & Andrews, S. M. 1994. Westlothiana lizziae from the Visean of East Kirkton, West Lothian, Scotland and the amniote stem. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 383412.CrossRefGoogle Scholar
Stock, D. W. & Swofford, D. L. 1991. Coelacanth relationships. Nature 353, 217–8.CrossRefGoogle Scholar
Vorobyeva, E. I. 1962. Rhizodontid crossopterygians of the Main Devonian Field in the USSR. Trudy Paleontologicheskogo Instituta 104, 1108 (in Russian).Google Scholar
Vorobyeva, E. I. 1977. Morphology and nature of the evolution of crossopterygian fishes. Trudy Paleontologicheskogo Instituta 163, 1240 (in Russian).Google Scholar
Vorobyeva, E. I. 1992. The problem of the terrestrial vertebrate origin. Moscow: Nauka (in Russian).Google Scholar
Vorobyeva, E. I. & Schultze, H.-P. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods. In Schultze, H.-P. & Trueb, L. (eds) Origins of the Higher Groups of Tetrapods: controversy and consensus, 68–109. Ithaca: Cornell Publishing Associates.Google Scholar
Warren, J. W. & Wakefield, N. A. 1972. Trackways of tetrapod vertebrates from the Upper Devonian of Victoria, Australia. Nature 238, 469–70.CrossRefGoogle Scholar
Watson, D. M. S. 1926. Croonian Lecture. The origin and evolution of the Amphibia. Philosophical Transactions of the Roval Society of London B214, 189257.Google Scholar
Westoll, T. S. 1938. Ancestry of the tetrapods. Nature 141, 127.CrossRefGoogle Scholar
Young, G. C. 1993. Middle Palaeozoic macrovertebrate biostratigraphy of eastern Gondwana. In Long, J. A. (ed.) Palaeozoic Vertebrate Biostratigraphy and Biogeography, 208–51, London: Bellhaven Press.Google Scholar
Young, G. C., Long, J. A. & Ritchie, A. 1992. Crossopterygian fishes from the Devonian of Antarctica: Systematics, relationships and biogeographic significance. Records of the Australian Museum, Supplement 14, 177.CrossRefGoogle Scholar
Zardoya, R. & Meyer, A. 1996. Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proceedings of the National Academy of Sciences of the USA 93, 5449–54.CrossRefGoogle ScholarPubMed