Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:12:01.947Z Has data issue: false hasContentIssue false

Location of trace elements in soil profiles: total and extractable contents of individual horizons

Published online by Cambridge University Press:  03 November 2011

M. L. Berrow
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, Scotland.
R. L. Mitchell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, Scotland.

Abstract

Total contents of 29 trace and major elements and extractable contents of 20 elements were determined in the horizons of 4 profiles, 2 freely drained and 2 very poorly drained, of Scottish soils on drifts of basic igneous or granitic origin. The probable behaviour of other elements is suggested in the light of the results obtained. It is shown that in the course of pedological weathering, many elements are mobilised and become extractable by relatively weak reagents such as ammonium acetate (when readily exchangeable), dilute acetic acid (when less readily exchangeable or acid-soluble) or EDTA (when chelated or exchangeable). The forms in which different elements occur in the different horizons are assessed. In the surface horizons rich in organic matter many elements, such as Co, Ni, Fe, V, Cu, Cd, Sn and Pb, appear to occur mainly in chelated form; fewer, particularly Mn, are only in exchangeable form with plant uptake being largely responsible. Lower in the profiles the most common forms are acetic acid-soluble or, in gleyed horizons, exchangeable. In these horizons the degree of mobilisation is greater than in the corresponding freely drained horizons, the effect being most apparent for elements in readily weathered minerals.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S. N., Honeysett, J. L., Tiller, K. G. & Norrish, K. 1969. Factors controlling the increase of cobalt in plants following the addition of a cobalt fertiliser. AUST J SOIL RES 7, 2942.CrossRefGoogle Scholar
Alexander, T. G. & Robertson, J. A. 1972. EDTA-extractable phosphorus in relation to available and inorganic phosphorus forms in soils. SOIL SCI 114, 6972.CrossRefGoogle Scholar
Anderson, G. & Malcolm, R. E. 1974. The nature of alkali-soluble soil organic phosphates. J SOIL SCI 25, 282–97.CrossRefGoogle Scholar
Anderson, G., Williams, E. G. & Moir, J. O. 1974. A comparison of the sorption of inorganic orthophosphate and inositol hexaphos-phate by six acid soils. J SOIL SCI 25, 5162.CrossRefGoogle Scholar
Apostolakis, C. G. & Douka, C. E. 1970. Distribution of macro and micronutrients in soil profiles developed on lithosequences and under biosequences in Northern Greece. SOIL SCI SOC AM PROC 34, 290–96.CrossRefGoogle Scholar
Archer, F. C. 1963. Trace elements in some Welsh upland soils. J SOIL SCI 14, 144–8.CrossRefGoogle Scholar
Bache, B. W. & Sharp, G. S. 1976. Characterisation of mobile aluminium in acid soils. GEODERMA 15, 91101.CrossRefGoogle Scholar
Barragan, Landa E. & Iniguez, Herrero J. 1973. Correlacion cuantitativa de oligoelementos en suelos y Roca Madre. AN EDAFOL AGROBIOL 32, 8997.Google Scholar
Borggaard, O. K. 1976. The use of EDTA in soil analysis. ACTA AGRIC SCAND 26, 144–50.CrossRefGoogle Scholar
Bunzl, K., Schmidt, W. & Sansoni, B. 1976. Kinetics of ion exchange in soil organic matter IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat. J SOIL SCI 27, 3241.CrossRefGoogle Scholar
Burridge, J. C. & Ahn, P. M. 1965. A spectrographic survey of representative Ghana forest soils. J SOIL SCI 16, 296309.CrossRefGoogle Scholar
Cary, E. E., Allaway, W. H. & Olson, O. E. 1977. Control of chromium concentrations in food plants. 2. Chemistry of chromium in soils and its availability to plants. J AGRIC FOOD CHEM 25, 305–9.CrossRefGoogle Scholar
Cheng, S. M., Thomas, R. L. & Elrick, D. E. 1972. Reactions and movement of EDTA and Zn EDTA in soils. CAN J SOIL SCI 52, 337–41.CrossRefGoogle Scholar
Cheshire, M. V., Berrow, M. L., Goodman, B. A. & Mundie, C. M. 1977. Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. GEOCHIM COSMOCHIM ACTA 41, 1131–8.CrossRefGoogle Scholar
Chmielewska, B. 1969. Stability constants of soluble Cu, Co and Zn complex combinations with humic acids of lowmoor. POL J SOIL SCI 2, 107–19.Google Scholar
Cottenie, A. & Gabriels, R. 1967. Trace element fractions and their availability. In Jacks, G. V. (ed.) Soil Chemistry and Fertility, 247–53. Aberdeen: International Society of Soil Science.Google Scholar
Davey, B. G. & Mitchell, R. L. 1968. The distribution of trace elements in cocksfoot (Dactylis glomerata) at flowering. J SCI FOOD AGRIC 19, 425–31.CrossRefGoogle Scholar
DeKock, P. C. & Mitchell, R. L. 1957. Uptake of chelated metals by plants. SOIL SCI 84, 5562.CrossRefGoogle Scholar
Ellis, B. G. & Knezek, B. D. 1972. Adsorption reactions of micronutrients in soils. In Mortvedt, J. J., Giordano, P. M. & Lindsay, W. L. (eds) Micronutrients in Agriculture, 5978. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Fleming, G. A., Walsh, T. & Ryan, P. 1968. Some factors influencing the content and profile distribution of trace elements in Irish soils. TRANS 9th INT CONGR SOIL SCI 2, 341–50.Google Scholar
Follett, R. H. & Lindsay, W. L. 1970. Profile distribution of Zn. Fe, Mn and Cu in Colorado soils. COLORADO STATE UNIV EXP STN TECH BULL 110.Google Scholar
Geering, H. R. & Hodgson, J. F. 1969. Micronutrient cation complexes in soil solution III. Characterisation of soil solution ligands and their complexes with Zn2+ and Cu2+. SOIL SCI SOC AM PROC 33, 54–9.CrossRefGoogle Scholar
Geering, H. R., Hodgson, J. F. & Sdano, C. 1969. Micronutrient cation complexes in soil solution IV. The chemical state of manganese in soil solution. SOIL SCI SOC AM PROC 33, 81–5.CrossRefGoogle Scholar
Glentworth, R. 1954. The soils of the country round Banff, Huntly and Turriff. MEM SOIL SURV GB. Edinburgh: H.M.S.O.Google Scholar
Glentworth, R. 1967. Soils of Scotland. In Jacks, G. V. (ed.) Soil Chemistry and Fertility, 401–9. Aberdeen: International Society of Soil Science.Google Scholar
Glentworth, R. & Muir, J. W. 1963. The soils of the country round Aberdeen, Inverurie and Fraserburgh. MEM SOIL SURV GB. Edinburgh: H.M.S.O.Google Scholar
Goldschmidt, V. M. 1954. Geochemistry. Muir, A. (ed.). Oxford: Clarendon Press.Google Scholar
Gotoh, S. S. & Patrick, W. H. 1974. Transformation of iron in a waterlogged soil as influenced by redox potential and pH. SOIL SCI SOC AM PROC 38, 6671.CrossRefGoogle Scholar
Higashi, T. 1973. [Metallic trace elements in soil profiles derived from different rock types.] BULL FAC AGRIC YAMAGUTI UNIV no. 24, 673–92.Google Scholar
Himes, F. L. & Barber, S. A. 1957. Chelating ability of soil organic matter. SOIL SCI SOC AM PROC 21, 368–73.CrossRefGoogle Scholar
Hodgson, J. F. 1963. Chemistry of the micronutrient elements in soils. ADV AGRON 15, 119–50.CrossRefGoogle Scholar
Hodgson, J. F., Geering, H. R. & Norvell, W. A. 1965. Micronutrient cation complexes in soil solution: partition between complexed and uncomplexed forms by solvent extraction. SOIL SCI SOC AM PROC 29, 665–9.CrossRefGoogle Scholar
Hodgson, J. F., Lindsay, W. L. & Trierweiler, J. F. 1966. Micronutrient cation complexing in soil solution II. Complexing of zinc and copper in displaced solution from calcareous soils. SOIL SCI SOC AM PROC 30, 723–26.CrossRefGoogle Scholar
Hutton, J. T. 1977. Titanium and zirconium minerals. In Dixon, J. B. & Weed, S. B. (eds) Minerals in Soil Environments, 673–88. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Klimovich, P. V. 1969. [Migration of trace elements in the lithogenic base of landscapes of the Volyn elevation.] GEOGR DOSL UKR 1969, 2939.Google Scholar
Laruelle, J. & Stoops, G. 1967. Minor elements in Galapagos soils. PEDOL, GAND 17, 232–58.Google Scholar
Lentschig, S. & Fiedler, H. J. 1966. Zum spurenelementgehalt von Braunerde- und podsol-profilen des Mittelgebirges. ABH STAATL MUS MINERAL GEOL DRESDEN 11, 281306.Google Scholar
Le Riche, H. H. & Weir, A. H. 1963. A method of studying trace elements in soil fractions. J SOIL SCI 14, 225–35.CrossRefGoogle Scholar
Lindsay, W. L. 1972a. Influence of the soil matrix on the availability of trace elements to plants. ANN NEW YORK ACAD SCI 199, 3745.CrossRefGoogle ScholarPubMed
Lindsay, W. L. 1972b. Zinc in soils and plant nutrition. ADV AGRON 24, 147–86.CrossRefGoogle Scholar
Lindsay, W. L. & Norvell, W. A. 1969. Equilibrium relationships of Zn2+, Fe3+, Ca2+ and H+ with EDTA and DTPA in soils. SOIL SCI SOC AM PROC 33, 62–8.CrossRefGoogle Scholar
Lisk, D. J. 1972. Trace metals in soils, plants and animals. ADV AGRON 24, 267325.CrossRefGoogle Scholar
McKenzie, R. M. 1975. The mineralogy and chemistry of soil cobalt. In Nicholas, D. J. D. & Egan, A. R. (eds) Trace Elements in Soil-Plant-Animal Systems, 8393. New York: Academic Press.CrossRefGoogle Scholar
McLaren, R. G. & Crawford, D. V. 1973. Studies on soil copper I. The fractionation of copper in soils. J SOIL SCI 24, 172–81.CrossRefGoogle Scholar
Mattigod, S. V. & Sposito, G. 1977. Estimated association constants for some complexes of trace elements with inorganic ligands. SOIL SCI SOC AM J 41. 1092–7.CrossRefGoogle Scholar
Meelu, O. P. & Randhawa, N. S. 1971. Stability constants of zinc-humic acid complexes. INDIAN J AGRIC SCI 41, 730–6.Google Scholar
Mitchell, R. L. 1937. Base exchange equilibria in soil profiles. J AGRIC SCI 27, 557–68.CrossRefGoogle Scholar
Mitchell, R. L. 1945. Cobalt and nickel in soils and plants. SOIL SCI 60, 6370.CrossRefGoogle Scholar
Mitchell, R.L. 1955. Trace elements. In Bear, F. E. (ed.) Chemistry of the Soil. ACS Monograph No. 126, 253–85. New York: Reinhold.Google Scholar
Mitchell, R. L. 1960. Contamination problems in soil and plant analysis. J SCI FOOD AGRIC 11, 553–60.CrossRefGoogle Scholar
Mitchell, R. L. 1964a. Trace elements in soils. In Bear, F. E. (ed.) Chemistry of the Soil, 2nd edn. ACS Monograph no. 160, 320–68. New York: Reinhold.Google Scholar
Mitchell, R. L. 1964b. The spectrochemical analysis of soils, plants and related materials. TECH COMMUN COMMONW BUR SOIL SCI 44A.Google Scholar
Mitchell, R. L. 1972. Trace elements in soils and factors that affect their availability. BULL GEOL SOC AM 83, 1069–76.CrossRefGoogle Scholar
Mitchell, R. L. & Burridge, J. C. 1979. Trace elements in soils and crops. PHILOS TRANS R SOC B288, 1524.Google Scholar
Mitchell, R. L., Reith, J. W. S. & Johnston, I. M. 1957. Soil copper status and plant uptake. In Plant Analysis and Fertilizer Problems, 249–61. Paris: I.R.H.O.Google Scholar
Mitchell, R. L. & Scott, R. O. 1948. Applications of chemical concentration by organic reagents to spectrographic analysis. SPECTROCHIM ACTA 3, 367–78.CrossRefGoogle Scholar
Mitchell, R. L. & Scott, R. O. 1957. The application of spectrochemical methods to agricultural problems. APPL SPECTROSC 11, 612.CrossRefGoogle Scholar
Muir, J. W. 1952. The determination of total phosphorus in soil. ANALYST 77, 313–17.CrossRefGoogle Scholar
Moore, T. R. 1973. The distribution of iron, manganese and aluminium in some soils from north-east Scotland. J SOIL SCI 24, 162–71.CrossRefGoogle Scholar
Nair, K. P. P. & Cottenie, A. 1971. Parent material-soil relationships in trace elements — a quantitative estimation. GEODERMA 5, 8197.CrossRefGoogle Scholar
Nalovic, L. & Pinta, M. 1969. Recherches sur les éléments traces dans les sols tropicaux: étude de quelques sols de Madagascar. GEODERMA 3, 117–32.CrossRefGoogle Scholar
Nalovic, L. & Pinta, M. 1972. Recherches sur les éléments traces dans les sols tropicaux: étude de quelques sols du Cameroun. GEODERMA 7, 249–67.CrossRefGoogle Scholar
Norvell, W. A. 1972. Equilibria of metal chelates in soil solution. In Mortvedt, J. J., Giordano, P. M. & Lindsay, W. L. (eds) Micronutrients in Agriculture, 115–38. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Norvell, W. A. & Lindsay, W. L. 1969. Reaction of EDTA complexes of Fe, Zn, Mn and Cu with soils. SOIL SCI SOC AM PROC 33, 8691.CrossRefGoogle Scholar
Obukhov, A. I. 1968. [Minor element content and distribution in soils of the arid tropical zone in Burma.] POCHVOVEDENIE 2, 93102.Google Scholar
Oertel, A. C. 1961. Relation between trace element concentrations in soil and parent material. J SOIL SCI 12, 119–28.CrossRefGoogle Scholar
Pédro, G. & Delmas, A.-B. 1970. Les principes géochimiques de la distribution des eléments-traces dans les sols. ANN AGRON, 21, 483518.Google Scholar
Perel'man, A. I. 1967. Geochemistry of Epigenesis. New York: Plenum Press.CrossRefGoogle Scholar
Quirk, J. P. & Posner, A. M. 1975. Trace element adsorption by soil minerals. In Nicholas, D. J. D. & Egan, A. R. (eds) Trace Elements in Soil-Plant-Animal Systems, 95107. New York: Academic Press.CrossRefGoogle Scholar
Rich, C. I. 1960. Aluminium in interlayers of vermiculite. SOIL SCI SOC AM PROC 24, 2632.CrossRefGoogle Scholar
Schnitzer, M. & Hansen, E. H. 1970. Organo-metallic interactions in soils: 8. An evaluation of methods for the determination of stability constants of metal-fulvic acid complexes. SOIL SCI 109, 333–40.CrossRefGoogle Scholar
Schnitzer, M. & Skinner, I. 1966. Organo-metallic interactions in soils: 5. Stability constants of Cu++ -, Fe++- and Zn++ -fulvic acid complexes. SOIL SCI 102, 361–5.CrossRefGoogle Scholar
Schnitzer, M. & Skinner, I. 1967. Organo-metallic interactions in soils: 7. Stability constants of Pb++ -, Ni++-, Mn++-, Co++-, Ca++-, and Mg++ -fulvic acid complexes. SOIL SCI 103, 247–52.CrossRefGoogle Scholar
Schwarz, K. 1974. New essential trace elements (Sn, V, F, Si): progress report and outlook. In Hoekstra, W. G., Suttie, J. W., Ganther, H. E. & Mertz, W. (eds) Trace Element Metabolism in Animals2, 355–80. London: Butterworths.Google Scholar
Schwertmann, U., Fischer, W. R. & Papendorf, H. 1968. The influence of organic compounds on the formation of iron oxides. TRANS 9th INT CONGR SOIL SCI 1, 645–55.Google Scholar
Scott, R. O. 1941. The colorimetric estimation of iron with sodium salicylate. ANALYST 66, 142–8.CrossRefGoogle Scholar
Scott, R. O. & Ure, A. M. 1958. The determination of magnesium in solution by direct photometry. ANALYST 83, 561–70.CrossRefGoogle Scholar
Short, N. M. 1961. Geochemical variations in four residual soils. J GEOL 69, 534–71.CrossRefGoogle Scholar
Sillén, L. G. & Martell, A. E. 1964. Stability constants of metal-ion complexes, 2nd edn. SPEC PUB CHEM SOC 17.Google Scholar
Sillén, L. G. & Martell, A. E. 1971. Stability constants of metal-ion complexes, Suppl. No 1. SPEC PUB CHEM SOC 25.Google Scholar
Stevenson, F. J. 1977. Nature of divalent transition metal complexes of humic acid as revealed by a modified potentiometric titration method. SOIL SCI 123, 1017.CrossRefGoogle Scholar
Stevenson, F. J. & Ardakani, M. S. 1972. Organic matter reactions involving micronutrients in soils. In Mortvedt, J. J., Giordano, P. M. & Lindsay, W. L. (eds) Micronutrients in Agriculture, 5978. Madison Wisconsin: Soil Science Society of America.Google Scholar
Stoilov, G. & Atanasov, I. 1971. [Distribution of manganese, iron, cobalt and copper in mechanical fractions of chernozem smonitza.] IZV TIMIRY AZEVSK SEL KHOZ AKAD No. 3, 141–8.Google Scholar
Sudom, M. D. & St. Arnaud, R. J. 1971. Use of quartz, zircon and titanium as indices in pedological studies. CAN J SOIL SCI 51, 385–96.CrossRefGoogle Scholar
Swaine, D. J. & Mitchell, R. L. 1960. Trace element distribution in soil profiles. J SOIL SCI 11, 347–68.CrossRefGoogle Scholar
Taylor, R. M. & McKenzie, R. M. 1966. The association of trace elements with manganese minerals in Australian soils. AUST J SOIL RES 4, 2939.CrossRefGoogle Scholar
Tidball, R. R. 1976. Lead in soils. In Lovering, T. G. (ed.) Lead in the Environment. PROF PAP US GEOL SURV 957, 4352. Washington: US Government Printing Office.Google Scholar
Tiller, K. G. 1963. Weathering and soil formation on dolerite in Tasmania with particular reference to several trace elements. AUST J SOIL RES 1, 7490.CrossRefGoogle Scholar
Toth, S. J. 1964. The physical chemistry of soils. In Bear, F. E. (ed.) Chemistry of the Soil, 2nd edn. ACS Monograph No. 160, 142–62. New York: Reinhold.Google Scholar
Ure, A. M., Bacon, J. R., Berrow, M. L. & Watt, J. J. 1979. The total trace element content of some Scottish soils by spark source mass spectrometry. GEODERMA 22, 123.CrossRefGoogle Scholar
Ure, A. M. & Shand, C. A. 1974. The determination of mercury in soils and related materials by cold-vapour atomic absorption spectrometry. ANAL CHIM ACTA 72, 6377.CrossRefGoogle Scholar
Dijk, Van, 1971. Cation binding of humic acids. GEODERMA 5, 5367.CrossRefGoogle Scholar
Viets, F. G. 1962. Chemistry and availability of micronutrients in soil. J AGRIC FOOD CHEM 10, 174–8.CrossRefGoogle Scholar
Webber, G. R. & Jellema, J. U. 1965. Comparison of chemical composition of soils and bed rock of Mont St. Hilaire, Quebec. CAN J EARTH SCI 2, 4458.CrossRefGoogle Scholar
Wells, N. 1960. Total elements in topsoils from igneous rocks: an extension of geochemistry. J SOIL SCI 11, 409–24.CrossRefGoogle Scholar
Wiegner, G. 1936. Ionenumtausch und Struktur. TRANS 3rd INT CONGR SOIL SCI 3, 528. London: Murby.Google Scholar
Wiklander, L. 1964. Cation and anion exchange phenomena. In Bear, F. E. (ed.) Chemistry of the Soil, 2nd edn. ACS Monograph 160, 320–68. New York: Reinhold.Google Scholar
Wild, A. 1961. Loss of zirconium from 12 soils derived from granite. AUST J AGRIC RES 12, 300–5.CrossRefGoogle Scholar
Williams, E. G. 1968. Principles and prospects of chemical soil testing. Special publication issued in connection with the 40th anniversary celebrations of the Bedrijfslaboratorium voor Grond en Gewasonderzoek, Oosterbeek, Netherlands, 1731.Google Scholar
Williams, E. G. & Saunders, W. M. H. 1956. Distribution of phosphorus in profiles and particle-size fractions of some Scottish soils. J SOIL SCI 7, 90108.CrossRefGoogle Scholar
Williams, E. G. & Stewart, A. B. 1941. The colorimetric determination of readily soluble phosphate in soils. J SOC CHEM IND 60, 291–7.CrossRefGoogle Scholar