Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T17:44:41.408Z Has data issue: false hasContentIssue false

Kossoviella timanica Petrosjan emend. from the Upper Devonian of North Timan: morphology and spore ultrastructure

Published online by Cambridge University Press:  12 October 2018

Olga A. Orlova*
Affiliation:
Department of Palaeontology, Faculty of Geology, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russia. Email: [email protected] A. A. Borissiak Palaeontological Institute of the Russian Academy of Sciences, 123 Profsoyuznaya, Moscow, 117647, Russia.
Natalia Zavialova
Affiliation:
A. A. Borissiak Palaeontological Institute of the Russian Academy of Sciences, 123 Profsoyuznaya, Moscow, 117647, Russia.
Sergey Snigirevsky
Affiliation:
Institute of Earth Science, St. Petersburg University, 7–9 Universitetskaya nab., St. Petersburg, 199034, Russia.
Aleftina Jurina
Affiliation:
Department of Palaeontology, Faculty of Geology, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russia. Email: [email protected]
Anna Lidskaya
Affiliation:
Department of Palaeontology, Faculty of Geology, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russia. Email: [email protected]
*
*Corresponding author

Abstract

The morphology of sterile and fertile structures (terminal strobili) of the Upper Devonian heterosporous lycopsid Kossoviella timanica Petrosjan 1984 from northern Russia (North Timan) is re-described: the axes are dichotomously branched; sterile leaves are narrow with smooth margins; the transition from sterile axes to strobili is gradual; the strobili are narrow and cylindrical, occasionally dichotomously branched; sporophylls are long, lanceolate, with crenulated margins; megasporangia with thin, mostly destroyed, sporangium walls contain one or two tetrads of large megaspores without a gula; numerous microspore tetrads are present in the microsporangia; both mega- and microspores are cavate, with a two-layered sporoderm; the outer layer of the sporoderm of both mega- and microspores consists of a net of intertwined cylindrical elements; the inner layer of the megaspore sporoderm is a basal lamina; and the inner homogeneous layer of the microspore sporoderm is split into multilamellate zones near the arms of the proximal scar. A comparison between abortive and fertile megaspores, some of which apparently were not completely mature, allows us to hypothesise that the enlargement and lateral stretching of structural units of the sporoderm, and the spaces between them, took place during the final stages of ontogenesis of megaspores along with the additional accumulation of amorphous sporopollenin. Both layers of the megaspore sporoderm, as well as the cavity between them, developed early in the ontogenesis. Although Kossoviella timanica was certainly a unique Late Devonian plant, it bears some resemblance to the Givetian heterosporous, bisporangiate lycopsid Yuguangia ordinata in having dichotomously branching axes, sporophylls with spiny margins and strobili with proximal megasporangia and distal microsporangia. Kossoviella timanica is also similar to the Famennian bisporangiate lycopsid Bisporangiostrobus harrisii in lacking a ligula and in having dichotomously branching strobili with proximal megasporangia and distal microsporangia.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Berry, C. M., Wang, Y. & Chongyang, C. 2003. A lycopsid with novel reproductive structures from the Upper Devonian of Jiangsu, China. International Journal of Plant Sciences 164, 263273.Google Scholar
Cai, C. & Chen, L. 1996. On Chinese Givetian lycopod, Longostachys latisporophyllus Zhu, Hu and Feng, emend.: its morphology, anatomy and reconstruction. Palaeontographica Abt. B 238, 143.Google Scholar
Chitaley, S. & McGregor, D. C. 1988. Bisporangiostrobus harrisii gen.et sp. nov., an eligulate lycopsid cone with Duosporites megaspores and Geminospora microspores from the Upper Devonian of Pennsylvania, U.S.A. Palaeontographica Abt. B 210, 127149.Google Scholar
Fairon-Demaret, M. 1977. New lycophyte cone from the Upper Devonian of Belgium. Palaeontographica Abt. B 162, 5163.Google Scholar
Fairon-Demaret, M. 1991. The Upper Devonian lycopsids from the Dinant Synclinorium (Belgium). Neues Jahrbuch für Geologie und Paläeontologie Abt. 183, 87101.Google Scholar
Grauvogel-Stamm, L. & Lugardon, B. 2001. The Triassic lycopsids Pleuromeia and Annalepis: relationships, evolution, and origin. American Fern Journal 91, 115149.Google Scholar
Hao, S. G., Xue, J. Z., Wang, Q. & Liu, Z. F. 2007. Yuguangia ordinata gen. et sp. nov., a new lycopsid from the Middle Devonian (late Givetian) of Yunnan, China, and its phylogenetic implications. International Journal of Plant Sciences 168, 11611175.Google Scholar
Lugardon, B., Grauvogel-Stamm, L. & Dobruskina, I. 1999. The microspores of Pleuromeia rossica Neuburg (Lycopsida; Triassic): comparative ultrastructure and phylogenetic implications. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science 329, 435442.Google Scholar
Meng, M., Wang, D., Xue, J. & Zhu, X. 2013. New insights and evolutionary significance of the megasporangiate strobilus of Minostrobus chaohuensis (Lycopsida) from the Upper Devonian of South China. Review Palaeobotany and Palynology 190, 2040.Google Scholar
Meng, M.-C., Wang, D.-M. & Yao, J.-X. 2015. Vegetative characters, grown habit and microsporangiate strobilus of Lycopsid Minostrobus chaohuensis. PLoS ONE 10, 116.Google Scholar
Meng, M.-C., Liu, L., Wang, D.-M. & Yao, J.-X. 2016. Grown architecture and microsporangiate strobilus of Sublepidodendron grabaui (Lycopsida) from the Late Devonian of South China. Review Palaeobotany and Palynology 224, 8393.Google Scholar
Orlova, O. A., Jurina, A. L. & Snigirevsky, S. M. 2016. Late Devonian plant communities of North Russia. Review Palaeobotany and Palynology 224, 94107.Google Scholar
Petrosjan, N. M. & Kossovoj, L. S. 1984. Some material of the Devonian flora research from North Timan. In Srebrodolskaya, I. N., Kolobova, I. M. & Modzalevskaya, E. A. (eds) Annual Proceedings of All-Union Paleontological Society, XXVII, 4254. Leningrad: VSEGEI (in Russian).Google Scholar
Rowley, J. R. & Morbelli, M. A. 1995. Megaspore wall growth in Selaginella (lycopodiatae). Plant Systematics and Evolution 194, 133162.Google Scholar
Schweitzer, H.-J. & Li, C.-S. 1996. Chamaedendron nov. gen. eine multisporangiate Lycophyte aus dem Frasnium Südchinas. Palaeontographica Abt. B 238, 4569.Google Scholar
Senkevitsch, M. A., Jurina, A. L. & Arkhangelskaya, A. D. 1993. On fructifications, morphology and anatomy of Givetian Lepidophytes in Kazakhstan (USSR). Palaeontographica Abt. B 230, 4358.Google Scholar
Telnova, O. P. 2005. Palynostratigraphic boundaries in the Devonian (exemplified by the Timan-Pechora Province). Abstract of Professor Thesis, Institute of Geology, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia (in Russian).Google Scholar
Telnova, O. P. 2007. Miospores from Middle-Late Devonian deposits of the Timan-Pechora Petroleum Province. Institute of Geology, Ural Branch of the Russian Academy of Sciences: Syktyvkar, Russia (in Russian).Google Scholar
Telnova, O. P. & Meyer-Melikyan, N. R. 2002. The spores from fertile parts of Devonian plants. Nauka: St. Petersburg (in Russian).Google Scholar
Wang, D.-M., Meng, M.-C., Xue, J.-Z., Basinger, J. F., Guo, Y. & Liu, L. 2014. Changxingia longifolia gen. et sp. nov., a new lycopsid from the Late Devonian of Zhejiang Province, South China. Review Palaeobotany and Palynology 203, 3547.Google Scholar
Wang, D.-M., Qin, M., Meng, M.-C., Liu, L. & Ferguson, D. K. 2016. New insights into the heterosporous lycopsid Changxingia from the Upper Devonian Wutong Formation of Zhejiang Province, China. Plant Systematics and Evolution 303, 1121.Google Scholar
Wang, Q., Li, C. S., Geng, B. Y. & Chitaley, S. 2003. A new species of Lepidostrobus from the Upper Devonian of Xinjiang, China and its bearing on the phylogenetic significance of the order Isoetales. Botanical Journal of the Linnean Society 143, 5567.Google Scholar
Wang, Y. 2001. A new lycopsid megaspore cone from the Upper Devonian of Chaohu, China. Botanical Journal of the Linnean Society 136, 439448.Google Scholar
Wang, Y., Xu, H.-H., Basinger, J. F. & Wang, Q. 2012. Re-study of Minostrobus chaohuensis Wang (Lycopsida) from the Upper Devonian of Anhui, South China. Palaeoworld 21, 2028.Google Scholar
Wellman, C. H., Gensel, P. G. & Taylor, W. A. 2009. Spore wall ultrastructure in the early lycopsid Leclercqia (protolepidodendrales) from the Lower Devonian of North America: evidence for a fundamental division in the lycopsids. American Journal of Botany 96, 18491860.Google Scholar
Zavialova, N. & Karasev, E. 2017. The use of the scanning electron microscope (SEM) to reconstruct the ultrastructure of sporoderm. Palynology 41, 89100.Google Scholar