Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T19:09:04.875Z Has data issue: false hasContentIssue false

The isotopic geochemistry of ocean waters through time

Published online by Cambridge University Press:  03 November 2011

A. E. Fallick
Affiliation:
Isotope Geology Unit, Scottish UniversitiesResearch and Reactor Centre, East Kilbride, Glasgow G75 0QU, Scotland, U.K.
P. J. Hamilton
Affiliation:
Isotope Geology Unit, Scottish UniversitiesResearch and Reactor Centre, East Kilbride, Glasgow G75 0QU, Scotland, U.K.

Abstract

There is a general consensus that the global chemistry of ocean water has not changed markedly during the Phanerozoic. Nevertheless, significant changes have occurred in the geochemical cycles of some elements and patterns of change have been reconstructed, in various forms, through consideration of the isotope ratios 13C/12C, 34S/32S, 87Sr/86Sr and 143Nd/144Nd. There have also been attempts to constrain variations in the isotopic composition of sea water itself through measurements of D/H and 18O/16O, the latter both directly and indirectly. Dissolved constituents in seawater display secular changes in isotopic composition as a consequence of quite different driving mechanisms. δ13C and δ34S variations are broadly correlated and linked by carbon and sulphur exogenic cycle interaction through redox reactions (the “free oxygen cycle”). The 87Sr/86Sr trend is determined by the balance among different Sr inputs to the oceanic pool, which vary in their isotopic composition (limestones, old granitic material and young basaltic material). Neodymium isotope variations are not globally synchronous. Changes in 143Nd/144Nd are influenced by local erosion products from continental landmasses and can therefore be different for coexisting palaeocean basins.

Type
Evolution of the Earth's environment through time
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A. J. & Fallick, A. E. 1988. High δ13C marbles from Lofoten–Vesterålen, Norway and implications for the Precambrian carbon cycle. CHEM GEOL 70, 140.Google Scholar
Baker, A. J. & Fallick, A. E. 1989a. Evidence from Lewisian limestones for isotopically heavy carbon in 2 billion year old seawater. NATURE 337, 352354.CrossRefGoogle Scholar
Baker, A. J. & Fallick, A. E. 1989b. High δ13C in 2 billion year old marbles from Lofoten-Vesterålen, Norway: Implications for the Precambrian carbon cycle. GEOCHIM COSMOCHIM ACTA 53, 11111115.CrossRefGoogle Scholar
Broeker, W. S. & Peng, T. H. 1982. Tracers in the Sea. New York: Eldigio Press.Google Scholar
Burke, W. M., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, M. F. & Otto, J. B. 1982. Variations of seawater 87Sr/86Sr throughout Phanerozoic time. GEOLOGY 10, 516519.2.0.CO;2>CrossRefGoogle Scholar
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. 1980. The age curves of sulphur and oxygen isotopes in marine sulfate and their mutual interpretation. CHEM GEOL 28, 199260.Google Scholar
DePaolo, D. J. & Ingram, B. L. 1985. High-resolution stratigraphy with strontium isotopes. SCIENCE 227, 938941.Google Scholar
Elderfield, H. & Greaves, M. J., 1982. The rare earth elements in seawater. NATURE 296, 214219.Google Scholar
Given, R. K. & Lohmann, K. C. 1985. Derivation of the original isotopic composition of Permian marine cements. J SEDIMENT PETROL 55, 430439.Google Scholar
Gregory, R. T. & Taylor, H. P. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J GEOPHYS RES 86, 27372755.Google Scholar
Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. Princeton: Princeton Press.Google Scholar
Holser, W. T. 1984. Gradual and Abrupt Shifts in Ocean Chemistry During Phanerozoic Time. In Holland, H. D. & Trendall, A. F.Patterns of Change in Earth Evolution, 123143. Berlin: Springer.Google Scholar
Hudson, J. D. & Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time TRANS R SOC EDINBURGH EARTH SCI 80, 183192.Google Scholar
Kahru, J. & Epstein, S. 1986. The implication of the oxygen isotope records in coexisting cherts and phosphates. GEOCHIM COSMOCHIM ACTA 50, 17451756.Google Scholar
Keto, L. S. & Jacobsen, S. B. 1987. Nd and Sr isotopic variations of Early Palaeozoic oceans. EARTH PLANET SCI LETT 84, 2741.Google Scholar
Knauth, L. P. & Beeunas, M. A. 1986. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. GEOCHIM COSMOCHIM ACTA 50, 419433.CrossRefGoogle Scholar
Knauth, L. P. & Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. GEOCHIM COSMOCHIM ACTA 40, 10951108.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. NATURE 321, 832838.Google Scholar
Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington, E. A., Nelson, H. F., Otto, J. B. & Waite, L. E. 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data. CHEM GEOL (ISOT GEOSCI SECT) 58, 5581.CrossRefGoogle Scholar
Kolodny, Y., Luz, B. & Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, II. Fish bone apatite— rechecking the rules of the game. EARTH PLANET SCI LETT 64, 398404.Google Scholar
Kolodny, Y. & Epstein, S. 1976. Stable isotope geochemistry of deep-sea cherts. GEOCHIM COSMOCHIM ACTA 40, 11951209.Google Scholar
Kump, L. R. 1989. Alternative modeling approaches to the geochemical cycles of carbon, sulfur and strontium isotopes. AM J SCI 289, 390410.CrossRefGoogle Scholar
Kump, L. R. & Garrels, R. M. 1986. Modeling atmospheric O2 in the global sedimentary redox cycle. AM J SCI 286, 337360.CrossRefGoogle Scholar
Luz, B., Kolodny, Y. & Kovach, J. 1984. Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. EARTH PLANET SCI LETT 69, 255262.Google Scholar
Macdougall, J. D. 1988. Seawater strontium isotopes, acid rain, and the Cretaceous–Tertiary boundary. SCIENCE 239, 485487.Google Scholar
McArthur, J. M., Hamilton, P. J., Greensmith, J. T., Boyce, A. J., Fallick, A. E., Birch, G., Walsh, J. M., Benmore, R. A. & Coleman, M. L. 1987. Phosphorite geochemistry: isotopic evidence for meteoric alteration of francolite on a local scale. CHEM GEOL (ISOT GEOSCI SECT) 65, 415425.CrossRefGoogle Scholar
Muehlenbachs, K. 1986. Alteration of the Oceanic Crust and the δ18O History of Seawater. In Valley, J. W., Taylor, H. P. & O'Neil, J. R. (eds). Stable Isotopes in High Temperature Geological Processes, 425444. Washington: Mineralogical Society of America.CrossRefGoogle Scholar
Muehlenbachs, K. & Clayton, R. N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J GEOPHYS RES 81, 43654369.Google Scholar
Palmer, M. R. & Elderfield, H. 1986. Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean. GEOCHIM COSMOCHIM ACTA 50, 409417.Google Scholar
Piepgras, D. J. & Wasserburg, G. J. 1980. Neodymium isotopic variations in seawater. EARTH PLANET SCI LETT 50, 128138.Google Scholar
Popp, B. N., Anderson, T. F. & Sandberg, P. A. 1986. Brachiopods as indicators of original isotopic compositions in some Palaeozoic limestones. GEOL SOC AM BULL 97, 12621269.Google Scholar
Schidlowski, M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. NATURE 333, 313318.CrossRefGoogle Scholar
Schidlowski, M., Eichmann, R. & Junge, C. E. 1976. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. GEOCHIM COSMOCHIM ACTA 40, 449455.Google Scholar
Shaw, J. F. & Wasserburg, G. J. 1985. Sm–Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages. GEOCHIM COSMOCHIM ACTA 49, 503518.Google Scholar
Shemesh, A., Kolodny, Y. & Luz, B. 1983. Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. EARTH PLANET SCI LETT 64, 405416.CrossRefGoogle Scholar
Shemesh, A., Kolodny, Y. & Luz, B. 1988. Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite francolite. GEOCHIM COSMOCHIM ACTA 52, 25652572.Google Scholar
Turner, D. R. & Whitfield, M. 1979. Control of seawater composition. NATURE 281, 468469.Google Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: theory and application of trace element technique. In Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. & Land, L. S.Stable Isotopes in Sedimentary Geology, 3–1 to 3100. SEPM Short Course No. 10. Tulsa: SEPM.Google Scholar
Veizer, J., Holser, W. T. & Wilgus, C. K. 1980. Correlation of 13C/12C and 34S/32S secular variations. GEOCHIM COSMOCHIM ACTA 44, 579587.CrossRefGoogle Scholar
Veizer, J., Compston, W., Clauer, N. & Schidlowski, M. 1983. 87Sr/86Sr in Late Proterozoic carbonates: evidence for a “mantle” event at ∼900 Ma ago. GEOCHIM COSMOCHIM ACTA 47, 295302.Google Scholar
Veizer, J., Fritz, P. & Jones, B. 1986. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Palaeozoic oceans. GEOCHIM COSMOCHIM ACTA 50, 16791696.CrossRefGoogle Scholar
Weis, D. & Wasserburg, G. J. 1987. Rb–Sr and Sm–Nd systematics of cherts and other siliceous deposits. GEOCHIM COSMOCHIM ACTA 51, 959972.Google Scholar
Wilmot, N. V. & Fallick, A. E. 1989. Original mineralogy of trilobite exoskeletons. PALAEONTOLOGY (in press).Google Scholar