Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T12:48:42.915Z Has data issue: false hasContentIssue false

The impact of modelling method selection on predicted extent and distribution of deep-sea benthic assemblages

Published online by Cambridge University Press:  02 September 2015

Nils Piechaud
Affiliation:
Marine Biology & Ecology Research Centre, Marine Institute, Plymouth University, Plymouth PL4 8AA, UK
Anna Downie
Affiliation:
Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK
Heather A. Stewart
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
Kerry L. Howell
Affiliation:
Marine Biology & Ecology Research Centre, Marine Institute, Plymouth University, Plymouth PL4 8AA, UK

Abstract

Predictive modelling of deep-sea species and assemblages with multibeam acoustic datasets as input variables is now a key tool in the provision of maps upon which spatial planning and management of the marine environment can be based. However, with a multitude of methods available, advice is needed on the best methods for the task at hand. In this study, we predictively modelled the distribution and extent of three vulnerable marine ecosystems (VMEs) at the assemblage level (‘Lophelia pertusa reef frameworks’; ‘Stylasterids and lobose sponges’; and ‘Xenophyophore fields’) on the eastern flank of Rockall Bank, using three modelling methods: MaxEnt; RandomForests classification with multiple assemblages (gRF); and RandomForests classification with the presence/absence of a single VME (saRF). Performance metrics indicated that MaxEnt performed the best, but all models were considered valid. All three methods broadly agreed with regard to broad patterns in distribution. However, predicted extent presented a variation of up to 35 % between the different methods, and clear differences in predicted distribution were observed. We conclude that the choice of method is likely to influence the results of predicted maps, potentially impacting political decisions about deep-sea VME conservation.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Aish, A. et al. 2008. Report of the ICES-NAFO Joint Working Group on Deep Water Ecology (WGDEC). Copenhagen, Denmark: International Council for the Exploration of the Sea. 124 pp.Google Scholar
Althaus, F., Williams, A., Schlacher, T. A., Kloser, R. J., Green, M. A., Barker, B. A., Bax, N. J., Brodie, P. & Schlacher-Hoenlinger, M. A. 2009. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Marine Ecology Progress Series 397, 279–94.Google Scholar
Auster, P. et al. 2013. Report of the ICES\ NAFO Joint Working Group on Deep-water Ecology (WGDEC) (11–15 March 2013, Floedevigen, Norway). Copenhagen, Denmark: International Council for the Exploration of the Sea. 95 pp.Google Scholar
Balmaseda, M. A., Trenberth, K. E. & Källén, E. 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters 40, 16.Google Scholar
Ban, N. C. Ban, N. C., Bax, N. J., Gjerde, K. M., Devillers, R., Dunn, D. C., Dunstan, P. K., Hobday, A., Maxwell, S. M., Kaplan, D. M., Pressey, R. L., Ardron, J. A., Game, E. T. & Halpin, P. N. 2013. Systematic conservation planning: A better recipe for managing the high seas for biodiversity conservation and sustainable use. Conservation Letters 7, 4154.Google Scholar
Bentlage, B., Peterson, A. T. & Cartwright, P. 2009. Inferring distributions of chirodropid box-jellyfishes (Cnidaria: Cubozoa) in geographic and ecological space using ecological niche modeling. Marine Ecology Progress Series 384, 121–33.Google Scholar
Bett, B. J. 2001. UK–Atlantic margin environmental survey: introduction and overview of bathyal ecology. Continental Shelf Research 21, 917–56.Google Scholar
Bett, B., Billett, D. Masson, D. & Tyler, P. 2001. RRS Discovery Cruise 248. A multidisciplinary study of the environment and ecology of deep-water coral ecosystems and associated seabed facies and features (The Darwin Mounds, Porcupine Bank and Porcupine Seabight). Southampton Oceanography Centre Cruise Report 36. Southampton, UK: Southampton Oceanography Centre. 108 pp.Google Scholar
Brady, H. B. 1883. Note on Syringammina, a new type of arenaceous Rhizopoda. Proceedings of the Royal Society of London 35, 155–61.Google Scholar
Breiman, L. 2001. Random forests. Machine learning 45, 532.Google Scholar
Buhl-Mortensen, L., Vanreusel, A., Gooday, A. J., Levin, L. A., Priede, I. G., Buhl-Mortensen, P., Gheerardyn, H., King, N. J. & Raes, M. 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31, 2150.Google Scholar
Colman Collins, P., Kennedy, B., Copley, J., Boschen, R., Fleming, N., Forde, J., Ju, S-J., Lindsay, D., Marsh, L., Nye, V., Patterson, A., Watanabe, H., Yamamoto, H., Carlsson, J. & Thaler, A. D. 2013. VentBase: Developing a consensus among stakeholders in the deep-sea regarding environmental impact assessment for deep-sea mining – A workshop report. Marine Policy 42, 334–36.Google Scholar
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J. C. & Lawler, J. J. 2007. Random forests for classification in ecology. Ecology 88(11), 2783–92.Google Scholar
Dambach, J. & Rodder, D. 2011. Applications and future challenges in marine species distribution modeling. Aquatic Conservation-Marine and Freshwater Ecosystems 21, 92-100.Google Scholar
Davies, A. J., Wisshak, M., Orr, J. C. & Roberts, J. M. 2008. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Research Part I: Oceanographic Research Papers 55, 1048–62.Google Scholar
Davies, J. S. 2012. Mapping Deep-Sea Features in UK Waters for Use in Marine Protected Area Network Design. PhD Thesis, University of Plymouth, UK. 347 pp.Google Scholar
Dolan, M. F. J., Grehan, A. J., Guinan, J. C. & Brown, C. 2008. Modelling the distribution of cold-water corals in relation to bathymetric variables: adding spatial contact to deep-sea video. Deep Sea Research Part 1: Oceanographic Research Papers 55(11), 1564–79.Google Scholar
Downie, A. L., von Numers, M. & Bostrom, C. 2013. Influence of model selection on the predicted distribution of the seagrass Zostera marina. Estuarine Coastal and Shelf Science 121, 819.Google Scholar
Dunn, D. C. & Halpin, P. N. 2009. Rugosity-based regional modeling of hard-bottom habitat. Marine Ecology Progress Series 377, 111.Google Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McQ. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. & Zimmermann, N. E.. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–51.Google Scholar
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1), 4357.Google Scholar
Elith, J. & Graham, C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 6677.Google Scholar
Elith, J. & Leathwick, J. R. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology Evolution and Systematics 40, 677–97.Google Scholar
Fielding, A. H. & Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1), 3849.Google Scholar
Form, A. U. & Riebesell, U. 2012. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology 18, 843–53.Google Scholar
Frederiksen, R., Jensen, A. & Westerberg, H. 1992. The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal tidal mixing. Sarsia 77, 157–71.Google Scholar
Freeman, E. 2007. PresenceAbsence: An R Package for Presence-Absence Model Evaluation. Ogden, Utah: USDA Forest Service, Rocky Mountain Research Station.Google Scholar
Galparsoro, I., Borja, A., Bald, J., Liria, P. & Chust, G. 2009. Predicting suitable habitat for the European lobster (Homarus gammarus), on the Basque continental shelf (Bay of Biscay), using Ecological-Niche Factor Analysis. Ecological Modelling 220, 556–67.Google Scholar
Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. 1986. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 5961.Google Scholar
Gonzalez-Mirelis, G. & Lindegarth, M. 2012. Predicting the distribution of out-of-reach biotopes with decision trees in a Swedish marine protected area. Ecological Applications 22, 2248–64.Google Scholar
Gooday, A. J. 1984. Records of deep-sea rhizopod tests inhabited by metazoans in the North-East Atlantic. Sarsia 69, 4553.Google Scholar
Gooday, A. J. 1991. Xenophyophores (Protista, Rhizopoda) in Box-Core Samples from the Abyssal Northeast Atlantic-Ocean (Biotrans Area) – their Taxonomy, Morphology, and Ecology. Journal of Foraminiferal Research 21, 197212.Google Scholar
Gooday, A. J. & Haynes, J. R. 1983. Abyssal forminifers, including two genera, encrusting the interior of Bathysiphon rusticus tubes. Deep Sea Research 30, 591614.Google Scholar
Gooday, A. J. & Tendal, O. S. 2000. Class Xenophyophorea Schulze, 1904. In Lee, J. J., Leedale, G. F. & Bradbury, P. (eds) The Illustrated Guide to the Protozoa, 2nd Edition, 1086–97. Lawrence, Kansas: Allen Press Inc., for the Society of Protozoologists. 1475 pp.Google Scholar
Greene, H. G., Yoklavich, M. M., Starr, R. M., O'Connell, V. M., Wakefield, W. W., Sillivan, D. E., McRea, J. E. Jr. & Cailliet, G. M. 1999. A classification scheme for deep seafloor habitats. Oceanologica Acta 22(6), 663–78.Google Scholar
Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 917.Google Scholar
Guinan, J., Grehan, A. J., Dolan, M. F. J. & Brown, C. 2009. Quantifying relationships between video observations of cold-water coral cover and seafloor features in Rockall Trough, west of Ireland. Marine Ecology Progress Series 375, 125–38.Google Scholar
Hasan, R. C., Ierodiaconou, D. & Monk, J. 2012. Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar. Remote Sensing 4, 3427–43.Google Scholar
Hijmans, R. J. 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–88.Google Scholar
Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. 2013. dismo: Species distribution modelling. (R package version 0.9-3 ed.)Google Scholar
Holmes, K. W., Van Niel, K. P., Radford, B., Kendrick, G. A. & Grove, S. L. 2008. Modelling distribution of marine benthos from hydroacoustics and underwater video. Continental Shelf Research 28, 1800–10.Google Scholar
Hovland, M. 2005. Pockmark-associated coral reefs at the Kristin field off Mid-Norway. In A. Freiwald, A. & J. M. Roberts, J. M. (eds) Cold-water Corals and Ecosystems, 623–32. Berlin: Springer-Verlag.Google Scholar
Howell, K. L. 2010. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic. Biological Conservation 143, 1041–56.Google Scholar
Howell, K. L., Billett, D. S. & Tyler, P. A. 2002. Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers 49, 1901–20.Google Scholar
Howell, K., Davies, J. & Narayanaswamy, B. 2010. Identifying deep-sea megafaunal epibenthic assemblages for use in habitat mapping and marine protected area network design. Journal of the Marine Biological Association of the United Kingdom 90, 3368.Google Scholar
Howell, K. L., Holt, R., Endrino, I. P. & Stewart, H. 2011. When the species is also a habitat: Comparing the predictively modelled distributions of Lophelia pertusa and the reef habitat it forms. Biological Conservation 144, 2656–65.Google Scholar
Hughes, J. A. & Gooday, A. J. 2004. Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers 51, 1741–58.Google Scholar
Huvenne, V. A. I. 2011. RRS James Cook Cruise 60, 09 May–12 June 2011. Benthic habitats and the impact of human activities in Rockall Trough, on Rockall Bank and in Hatton Basin. National Oceanography Centre Southampton Research & Consultancy Report 04. Southampton, UK: National Oceanography Centre, Southampton. 133 pp.Google Scholar
Jacobs, C. et al. 2006. SV Kommandor Jack Cruise 01/05, 11 Jul–08 Aug 2005. Multibeam bathymetry and high resolution sidescan sonar surveys within the SEA7 area of the UK continental shelf. National Oceanography Centre Southampton Research & Consultancy Report 07. 50 pp.Google Scholar
Kenchington, R. A. & Hutchings, P. 2012. Science, biodiversity and Australian management of marine ecosystems. Ocean & Coastal Management 69, 194–99.Google Scholar
Kiriakoulakis, K., Freiwald, A., Fisher, E. & Wolff, G. 2007. Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin. International Journal of Earth Sciences 96, 159–70.Google Scholar
Levin, L. A. 1991. Interaction between metazoans and large, agglutinating protozoans: implications for the community structure of deep-sea benthos. American Zoology 31, 886900.Google Scholar
Levin, L. A. 1994. Paleoecology and Ecology of Xenophyophores. Palaios 9, 3241.Google Scholar
Levin, L. A., DeMaster, D. J., McCann, L. D. & Thomas, C. L. 1986. Effect of giant protozoans (class:Xenophyophorea) on deep-seamount benthos. Marine Ecology Progress Series 29, 99104.Google Scholar
Levin, L. A. & Gooday, A. J. 1992. Possible roles for Xenophyophores in deep-sea carbon cycling. In G. T. Rowe, G. T. & V. Pariente, V. (eds) Deep-Sea Food Chains and the Global Carbon Cycle , 93104. Dordrecht: Kluwer Academic Publishers.Google Scholar
Levin, L. A. & Thomas, C. L. 1988. The Ecology of Xenophyophores (Protista) on Eastern Pacific Seamounts. Deep-Sea Research Part I: Oceanographic Research Papers 35, 2003–27.Google Scholar
Liaw, A. & Wiener, M. 2002. Classification and Regression by RandomForest. R news 2, 1822.Google Scholar
Linnaeus, C. v. 1758. Systema Naturae, edition X, vol. 1 (Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata). Holmiae: Salvii. 824 pp.Google Scholar
Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–93.Google Scholar
Long, D., Kerry, H., Davies, J. & Stewart, H. 2010. JNCC Offshore Natura survey of Anton Dohrn Seamount and East Rockall Bank Areas of Search. JNCC Report Series 437. Peterborough, UK: Joint Nature Conservancy Committee.Google Scholar
Manel, S., Dias, J., Buckton, S. & Ormerod, S. 1999. Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology 36, 734–47.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15, 5969.Google Scholar
McBreen, F., Askew, N., Cameron, A., Connor, D., Ellwood, H. & Carter, A. 2011. UK SeaMap 2010: Predictive Mapping of Seabed Habitats in UK Waters. JNCC Report 446. Peterborough, UK: Joint Nature Conservation Committee. 103 pp.Google Scholar
Miller, K. J., Rowden, A. A., Williams, A. & Häussermann, V. 2011. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLOS ONE 6, e19004.Google Scholar
Mortensen, P. B., Hovland, T., Fossa, J. H. & Furevik, D. M. 2001. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. Journal of the Marine Biological Association of the UK 81, 581–97.Google Scholar
Mortensen, P. B. & Buhl-Mortensen, L. 2004. Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Marine Biology 144, 1223–38.Google Scholar
Mortensen, P. B. & Buhl-Mortensen, L. 2005. Coral habitats in The Gully, a submarine canyon off Atlantic Canada. In Freiwald, A. & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems, 247–77. Berlin-Heidelberg: Springer-Verlag. 1244 pp.Google Scholar
Norse, E. A., Brooke, S., Cheung, W. W. L., Clark, M. R., Ekeland, I., Froese, R., Gjerde, K. M., Haedrich, R. L., Heppell, S. S., Morato, T., Morgan, L. E., Pauly, D., Sumaila, R. & Watson, R. 2012. Sustainability of deep-sea fisheries. Marine Policy 36, 307–20.Google Scholar
OSPAR. 2008. OSPAR List of Threatened and/or Declining Species and Habitats. OSPAR Agreement 2008-06, 14.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–59.Google Scholar
Phillips, S. J. & Dudík, M. 2008. Modelling of Species Distributions with MaxEnt: New Extensions and a Comprehensive Evaluation. Ecography 31, 161–75.Google Scholar
Poulos, H. M., Chernoff, B., Fuller, P. L. & Butman, D. 2012. Ensemble forecasting of potential habitat for three invasive fishes. Aquatic Invasions 7, 5972.Google Scholar
Puig, P., Canals, M., Company, J. B., Martín, J., Amblas, D., Lastras, G., Palanques, A. & Calafat, A. M. 2012. Ploughing the deep sea floor. Nature 489, 286–89.Google Scholar
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ready, J., Kaschner, K., South, A. B., Eastwood, P. D., Rees, T., Rius, J., Agbayani, E., Kullander, S. & Froese, R. 2010. Predicting the distributions of marine organisms at the global scale. Ecological Modelling 221, 467–78.Google Scholar
Reiss, H., Cunze, S., Konig, K., Neumann, H. & Kroncke, I. 2011. Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series 442, 7186.Google Scholar
Rengstorf, A. M., Yesson, C., Brown, C. & Grehan, A. J. 2013. High-resolution habitat suitability modelling can improve conservation of vulnerable marine ecosystems in the deep sea. Journal of Biogeography 40(9), 1702–14.Google Scholar
Rice, A., Thurston, M. & New, A. 1990. Dense aggregations of a hexactinellid sponge Pheronema carpenteri in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Progress in Oceanography 24, 179–96.Google Scholar
Rinehart, R., Wright, D., Lundblad, E., Larkin, E., Murphy, J., & Cary-Kothera, L. 2004. ArcGIS 8.x benthic terrain modeler: Analysis in American Samoa. In Proceedings of the 24th Annual ESRI User Conference, San Diego, CA, Paper 1433.Google Scholar
Roberts, J. M., Harvey, S. M., Lamont, P. A., Gage, J. D. & Humphery, J. D. 2000. Seabed photography, environmental assessment and evidence for deep-water trawling on the continental margin west of the Hebrides. Hydrobiologia 441, 173–83.Google Scholar
Roberts, J. M., Wheeler, A. J. & Freiwald, A. 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–47.Google Scholar
Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P. & Richardson, A. J. 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20, 789802.Google Scholar
Rogers, A. D. 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research Part II: Topical Studies in Oceanography 47, 119–48.Google Scholar
Rooper, C. N., Wilkins, M. E., Rose, C. S. & Coon, C. 2011. Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska. Continental Shelf Research 31, 1827–34.Google Scholar
Ross, R. E. & Howell, K. L. 2013. Use of predictive habitat modelling to assess the distribution and extent of the current protection of ‘listed’ deep-sea habitats. Diversity and Distributions 19, 433–45.Google Scholar
Ruhl, H. A. & Smith, K. L. 2004. Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–15.Google Scholar
Shires, R., Gooday, A. J. & Jones, A. R. 1994. The Morphology and Ecology of an Abundant New Komokiacean Mudball (Komokiacea, Foraminiferida) from the Bathyal and Abyssal NE Atlantic. Journal of Foraminiferal Research 24, 214–25.Google Scholar
Smith, A. B., Santos, M. J., Koo, M. S., Rowe, K. C., Rowe, K. M. C., Patton, J. L., Beissinger, S. & Moritz, C. 2013. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–31.Google Scholar
Stevens, T. & Connolly, R. M. 2004. Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biological Conservation 119, 351–62.Google Scholar
Stewart, H., Davies, J. S., Long, D., Strömberg, H. & Hitchen, K. 2009. JNCC Offshore Natura Survey: Anton Dohrn Seamount and East Rockall Bank. JNCC Cruise Report CR/09/113. Peterborough, UK: Joint Nature Conservation Committee.Google Scholar
Stohlgren, T. J., Ma, P., Kumar, S., Rocca, M., Morisette, J. T., Jarnevich, C. S. & Benson, N. 2010. Ensemble habitat mapping of invasive plant species. Risk Analysis 30, 224–35.Google Scholar
Strømgren, T. 1971. Vertical and horizontal distribution of Lophelia pertusa (Linné) in Trondheimsfjorden on the west coast of Norway. Kongelige Norske Videnskabelig Selskaps Skrifter 6, 119.Google Scholar
Tendal, O. S. 1972. A monograph of the Xenophyophorea (Rhizopodea, Protozoa). Galathea Report 12, 7103.Google Scholar
Tendal, O. S. 1979. Aspects of the biology of Komokiagea and Xenophyophorea. Sarsia 64, 1317.Google Scholar
Tendal, O. S. 1996. Synoptic checklist and bibliography of the Xenophyophorea (Protista), with a zoogeographical survey of the group. Galathea Report 17, 79101.Google Scholar
Thiem, O., Ravagnan, E., Fossa, J. H. & Berntsen, J. 2006. Food supply mechanisms for cold-water corals along a continental shelf edge. Journal of Marine Systems 60, 207–19.Google Scholar
Tyler, P. & Young, C. 1998. Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echinoidea): prerequisites for deep-sea invasion and speciation. Deep-Sea Research Part II: Topical Studies in Oceanography 45(1–3), 253–77.Google Scholar
UN General Assembly. 2003. Oceans and the Law of the Sea. Report of the Secretary General A/58/65.Google Scholar
Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography 36, 2290–99.Google Scholar
Ward, T., Vanderklift, M., Nicholls, A. & Kenchington, R. 1999. Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecological Applications 9, 691–98.Google Scholar
Weiss, A. D. 2011. Topographic Positions and Landforms Analysis. (Conference Poster, ESRI International Users Conference, San Diego, California).Google Scholar
Wheeler, A. J, Beyer, A., Freiwald, A., de Haas, H., Huvenne, V. A. I., Kozachenko, M., Olu-Le Roy, K. & Opderbecke, J. 2007. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. International Journal of Earth Sciences 96, 3756.Google Scholar
White, M., Mohn, C., de Stigter, H. & Mottram, G. 2005. Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In Friewald, A. & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems, 503–14. Berlin-Heidelberg: Springer. 1244 pp.Google Scholar
Williams, A., Bax, N. J., Kloser, R. J., Althaus, F., Barker, B. & Keith, G. 2009. Australia's deep-water reserve network: implications of false homogeneity for classifying abiotic surrogates of biodiversity. ICES Journal of Marine Science: Journal du Conseil 66, 214–24.Google Scholar
Williams, A., Schlacher, T. A., Rowden, A. A., Althaus, F., Clark, M. R., Bowden, D. A., Stewart, R., Bax, N. J., Consalvey, M. & Kloser, R. J. 2010. Seamount megabenthic assemblages fail to recover from trawling impacts. Marine Ecology 31, 183–99.Google Scholar
Wilson, J. B. 1979. Patch Development of the Deep-Water Coral Lophelia pertusa (L) on Rockall Bank. Journal of the Marine Biological Association of the United Kingdom 59(1), 165–77.Google Scholar
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A. & NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763–73.Google Scholar
Wright, D. J., Lundblad, E. R., Larkin, E. M., Rinehart, R. W., Murphy, J., Cary-Kothera, L. & Draganov, K. 2005. ArcGIS benthic terrain modeler. Corvallis, Oregon: Oregon State University, Davey Jones Locker Seafloor Mapping/Marine GIS Laboratory and NOAA Coastal Services Center.Google Scholar