Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T11:46:46.192Z Has data issue: false hasContentIssue false

High-level emplacement of an olivine–dolerite sill into Namurian sediments near Cardenden, Fife

Published online by Cambridge University Press:  03 November 2011

Brent H. Walker
Affiliation:
Department of Earth Sciences, The University, Leeds LS2 9JT, U.K.
E. Howel Francis
Affiliation:
Department of Earth Sciences, The University, Leeds LS2 9JT, U.K.

Abstract

Archival and recent boreholes over an area of c. 3 km2 have revealed complex magma-host interaction at the termination of an olivine–dolerite sill in Fife. The sill interior has zones rich in plastically deformed, vesiculated heterogeneous sediment surrounded by amygdaloidal basalt. Sediments at the contacts have been reconstituted and enclose blebs of chilled vesicular basalt. Intrusion into low rank coal seams has produced multicomponent tuffisite. A vertically nested and laterally fingered sill front is envisaged as having propagated down dip under a thin cover (<500 m) of wet Namurian sediments. Non-explosive bulk interaction of fluidised sediment and devolatilising magma occurred at intrusive contacts. Steam explosivity was more vigorous where lobes of magma repeatedly intruded moist lignite, to produce compositionally banded tuffisite rich in basalt clasts and coal fragments. The hydrovolcanic explosions did not give rise to surface eruptions because the low volumes of porewater and the high permeability and low tensile strength of the lignite prevented a build-up of high pressure steam.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacon, C. R. & Duffield, W. A. 1978. Soft-sediment deformation near the margin of a basalt sill in the Pliocence Coso formation, Inyo County, California (Abs). GEOL SOC AM, Cordilleran section 74th Annual Meeting, Tempe, Arizona, USA.Google Scholar
Britten, R. A. & Taylor, G. H. 1979. The nature and occurrence of coal dykes within the Singleton Coal Measures of New South Wales. AUST COAL GEOL 1, 2937.Google Scholar
Creany, S. 1980. Petrographic texture and vitrinite reflectance variation on the Alston Block, north-east England. PROC YORKS GEOL SOC 42, 553580.CrossRefGoogle Scholar
Delaney, P. T. & Pollard, D. D. 1981. Deformation of host rocks and flow of magma during growth of Minette dykes and breccia-bearing intrusions near Ship Rock, New Mexico. USGS PROF PAP 1202.Google Scholar
Dutcher, R. R., Campbell, D. L. & Thornton, C. P. 1966. Coal metamorphism and igneous intrusives in Colorado. AM CHEM SOC, ADV CHEM SER 55, 708723.CrossRefGoogle Scholar
Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M., Aguayo, E., Aubrey, M-P., Fornari, D., Guerro, J.Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Adolfo, M-G., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B. & Vacquier, V. 1980. Intrusion of basaltic sills into highly porous sediments and resulting hydrothermal activity. NATURE 283, 441445.CrossRefGoogle Scholar
Fischer, R. V. & Schminke, H-U. 1984. Pyroclastic Rocks. Berlin: Springer.CrossRefGoogle Scholar
Francis, E. H. 1961a. The economic geology of the Fife Coalfields, Area II: Cowdenbeath and Central Fife (2nd Edition). MEM GEOL SURV G B.Google Scholar
Francis, E. H. 1961b. Thin beds of graded kaolinitized tuff and tuffaceous siltstone in the Carboniferous of Fife. BULL GEOL SURV G B 17, 191215.Google Scholar
Francis, E. H. & Walker, B. H. 1987. Emplacement of alkali-dolerite sills relative to extrusive volcanism and sedimentary basins in the Carboniferous of Fife, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 77, 309–23.CrossRefGoogle Scholar
Francis, T. J. 1982. Thermal expansion effects in deep sea sediments. NATURE 299, No. 5881, 334336.CrossRefGoogle Scholar
Hadley, G. R., McVey, D. F. & Mann, R. 1981. Thermophysical properties of deep ocean sediments. PROC MAR TECHNOL 83, 551556.Google Scholar
Haldane, D. & Allan, J. K. 1931. The economic geology of the Fife Coalfields, Area I. MEM GEOL SURV G B.Google Scholar
Hickox, C. E., Gartling, D. K., McVey, D. F., Russo, A. J. & Nuttall, H. E. 1981. Analysis of heat and mass transfer in sub-seabed disposal of nuclear waste. PROC MAR TECHNOL 83, 557565.Google Scholar
Jaeger, J. C. 1957. The temperature in the neighbourhood of a cooling igneous sheet. AM J SCI 225, 306318.CrossRefGoogle Scholar
Jaeger, J. C. 1958. The solidification and cooling of intrusive sheets. In Dolerite: A Symposium, 7787. Hobart: University of Tasmania.Google Scholar
Jaeger, J. C. 1959. Temperature outside a cooling intrusive sheet. AM J SCI 257, 4454.CrossRefGoogle Scholar
Jaeger, J. C. 1961. The cooling of irregularly shaped igneous bodies. AM J SCI 259, 721734.CrossRefGoogle Scholar
Johnson, A. M. & Pollard, D. D. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I: field observations, Gilberts model, physical properties and flow of the magma. TECTONOPHYSICS 18, 261309.CrossRefGoogle Scholar
Jones, J. M. & Creany, S. 1977. Optical character of thermally metamorphosed coals of northern England. J MICROSC 109, 105118.CrossRefGoogle Scholar
Kokelaar, B. P. 1982. Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. J GEOL SOC LONDON 139, 2133.CrossRefGoogle Scholar
Kokelaar, B. P. 1983. The mechanism of Surtseyan volcanism. J GEOL SOC LONDON 140, 939944.CrossRefGoogle Scholar
Kokelaar, B. P. 1986. Magma-water interaction in subaqueous and emergent basaltic volcanism. BULL VOLCANOL 48, 275289.CrossRefGoogle Scholar
Kopp, O. C. & Harris, L. A. 1984. Initial volatilization temperature and average volatilization rates of coal, their relation to coal rank and other properties. INT J COAL GEOL 3, 333348.CrossRefGoogle Scholar
Lumsden, G. I. 1967. Intrusive coal at Douglas in Scotland. SCOTT J GEOL 3, 235247.CrossRefGoogle Scholar
Marsh, B. D. 1981. On the crystallinity, probability of occurrence and rheology of lava and magma. CONTRIB MINERAL PETROL 78, 8593.CrossRefGoogle Scholar
Martin, D. J. 1984. Microstructure, geochemistry and differentiation of a primary layered teschenite sill. GEOL MAG 122, 335350.CrossRefGoogle Scholar
McBirney, A. R. & Murase, T. 1984. Rheological properties of magmas. ANN REV EARTH PLANET SCI 12, 337357.CrossRefGoogle Scholar
Michel, R. 1953. Contribution à l'étude petrographiques des peperites et du volcanisme tertiare de la Grande Limagne. PUBL FAC SCI UNIV CLERMONT 1.Google Scholar
Michel-Levy, A. 1890. Situation stratigraphique de regions volcaniques de l'Auvergne. La Chaine des puys. Le Mont Dore et ses glentours. BULL SOC GEOL FRANCE 18, 688814.Google Scholar
Mills, A. A. 1984. Pillow lavas and the Leidenfrost effect. J GEOL SOC LONDON 141, 183186.CrossRefGoogle Scholar
Moore, J. G. 1975. Mechanism of formation of pillow lava. AM SCI 63, 269277.Google Scholar
Mykura, W. 1965. White trap in some Ayrshire coals. SCOTT J GEOL 1, 176184.CrossRefGoogle Scholar
Nicholson, R. 1985. The intrusion and deformation of Tertiary minor sheet intrusions, W. Suardal, Skye, Scotland. J GEOL 20(1), 5372.CrossRefGoogle Scholar
Pollard, D. D. 1973. Derivation and evolution of a mechanical model for sheet intrusions. TECTONOPHYSICS 19, 233269.CrossRefGoogle Scholar
Pollard, D. D. & Johnson, A. A. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah II: bending and failure of overburden layers and sill formation. TECTONOPHYSICS 18, 311354.CrossRefGoogle Scholar
Pollard, D. D., Muller, O. H. & Dockstader, D. R. 1975. The form and growth of fingered sheet intrusions. BULL GEOL SOC AM 86, 351363.2.0.CO;2>CrossRefGoogle Scholar
Reynolds, D. L. 1954. Fluidization as a geological process and its bearing on the problem of intrusive granites. AM J SCI 254, 577613.CrossRefGoogle Scholar
Sahagian, D. 1985. Bubble migration and coalescence during solidification of basalt lava flows. J GEOL 93, 205211.CrossRefGoogle Scholar
Scrope, G. P. 1862. Volcanos, 2nd ed. London: Longman, Green, Longmans and Roberts.Google Scholar
Stach, E.Mackowsky, M-Th., Teichmuller, M., Taylor, G. H., Chandra, D. & Teichmuller, R. 1982. Stack's textbook of coal petrology, 3rd ed. Berlin, Stuttgart: Tebruder Borntraeger.Google Scholar
Tweto, O. 1951. Form and structure of sills near Pando, Colorado. BULL GEOL SOC AM 62, 507532.CrossRefGoogle Scholar
Walker, B. H. 1986. Emplacement mechanism of high-level dolerite sills and related eruptions in sedimentary basins, Fife, Scotland. Unpublished PhD thesis, University of Leeds.Google Scholar
Williams, H. & McBirney, A. R. 1979. Volcanology. San Francisco: Freeman, Cooper & Co.Google Scholar
Wohletz, K. H., & McQueen, R. G. 1984a. Experimental studies of hydromagmatic volcanism. In Explosive Volcanism: Inception, evolution and hazards, studies in geophysics, 158169. Washington DC: National Academy Press.Google Scholar
Wohletz, K. H. & McQueen, R. G. 1984b. Volcanic and stratospheric dust-like particles produced by experimental crater-melt interactions. GEOLOGY 12, 591594.2.0.CO;2>CrossRefGoogle Scholar