Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T18:50:42.488Z Has data issue: false hasContentIssue false

Granite genesis related to geodynamics from Hf—Y in zircon

Published online by Cambridge University Press:  03 November 2011

Jean-Pierre Pupin*
Affiliation:
Laboratoire de Pétrologie-Minéralogie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Pare Valrose, F 06108 Nice Cedex 2, France.

Abstract

Zircon is a very interesting accessory mineral, a kind of ‘crustal diamond’, easily recycled and recording through large morphological variability the main rock-forming events. Since 1985, a systematic study of chemical variability of zircon in magmatic rocks has led to the definition of three main generations in zircon populations: inherited phase 1, magmatic phase 2 and late magmatic phase 3. Hafnium and yttrium appear to be the most useful for source characterisation, especially if using phase 2 data. As a consequence, a new diagram of HfO2 versus Y2O3 is proposed, divided into domains la to 6b to describe the distribution of the genetic groups and the specific domains for anorogenic and orogenic rocks. Zircon in anorogenic granitoids: tholeiitic plagiogranites (high Y, low Hf), hypersolvus (medium to low Y, low Hf) and subsolvus (medium to high Y and Hf) alkaline granites/rhyolites, has separate mean distributions. Genetic relations existing between rocks with obvious textural differences (granites, microgranites, rhyolites) are also recognised. Zircon in orogenic granitoids is Y-poor and shows a very limited distribution, but the minimal average values in magmatic zircon vary from 11 000 wt ppm HfO2 in the calc-alkaline suite, to 12 000 ppm in the peraluminous porphyritic granites and to 13 500 ppm in entirely crustal anatectic granites and migmatites. Mixing-mingling processes are proposed to explain the intermediate characteristics of zircons and rocks in the peraluminous porphyritic and K-subalkaline granites. This is consistent with the time emplacement and space distribution of these two orogenic members, but leads to a new proposal of emplacement of some alkaline subsolvus magmas during orogenic cycles.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amenzou, M. 1988. Les granitoïdes hercyniens du massif des Maurcs (Var, France) (Thesis, University of Nice).Google Scholar
Bates, R. L.& Jackson, J. A. 1980. Glossary of Geology, 2nd edn. Falls Church, Virginia, American Geological Institute.Google Scholar
Beccaluva, L., Ohnenstetter, D., Ohnenstetter, M.& Venturelli, G. 1977. The trace element geochemistry of Corsican ophiolites. Contributions to Mineralogy and Petrology 64, 1131.Google Scholar
Bonin, B. 1980. Les complexes acides alcalins anorogeniqucs continentaux: l'ensemble de la Corse (Thesis University of Paris VI).Google Scholar
Bonin, B. 1988. From orogenic to anorogenic environments: evidence from associated magmatic episodes. Schweizerische Mineralogische und Petrographische Mitteilungen 68, 301–11.Google Scholar
Bonin, B. 1988. Orogenic to non-orogenic magmatic events: overview of the late varsican magmatic evolution of the Alpine belt. Turkish Journal of Earth Sciences 7, 133–43.Google Scholar
Bonin, B., Platevoet, B.& Vialette, Y. 1987. The geodynamic significance of alkaline magmatism in the western Mediterranean compared with west Africa. Geological Journal 22, 361–87.Google Scholar
Boucarut, M. 1971. Etude volcanologique et géologique de l'Estérel (Var, France) (Thesis, University of Nice).Google Scholar
Brooks, C. K. 1970. The concentrations of zirconium and hafnium in some igneous and metamorphic rocks and minerals. Geochimica et Cosmochimica Acta 34, 411–16.Google Scholar
Bussy, F.& Hernandez, J. 1998. Magmatisme bimodal à 307 Ma dans de massif des Aiguilles-Rouges (Alpes): conséquense de l'extension tardi-orogenique varisque. Réunion Sciences de la Terre, 85. Special Issue, In Société Géologique de France (ed.).Google Scholar
Carbonnel, J. P., Deschamp, N.& Jaffrezic, H. 1973. Rapports Zr/Hf ct Dy/Eu dans les zircons des roches ignées basiques des séries continentales alcalines. Chemical Geology 12, 271–9.Google Scholar
Chennaoui, H. 1998. Morphologie et géochimie des zircons de formations calco-alcalines et anatectiques cénozoiqucs de la Méditerranée Occidentale. Implications pétrogénétiques (Thesis, University of Nice).Google Scholar
Clark, G. J., Gulson, B. L.& Cookson, J. A. 1979. Pb, U, Tl, Hf and Zr distributions in zircons determined by proton microprobe and fission track techniques Geochimica et Cosmochimica Acta 43, 905–18.Google Scholar
Correia Neves, J. M., Lopes Nunes, J. E.& Sahama, Th.G. 1974. High hafnium members of the zircon—hafnon series from the granite pegmatites of Zambezia, Mozambique. Contributions to Mineralogy and Petrology 48, 7380.Google Scholar
Dias, G., Leterrier, J., Mendes, A., Simoes, P. P.& Bertrand, J. M. 1998. U—Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45, 349–69.Google Scholar
Didier, J. 1964. Etudes pétrographiques des enclaves de quelques granites du Massif Central français (Thesis, University of Clermont-Ferrand).Google Scholar
Didier, J.& Barbarin, B. 1991. Enclaves and granite petrology, In Developments in Petrology 13. Amsterdam: Elsevier.Google Scholar
Eflfimoff, I. 1972. Chemical and morphological variations of zircons from the Boulder batholith, Montana. (Dissertation, University of St Lawrence Cincinnati).Google Scholar
Erlank, A. J., Smith, H. S., Marchant, J. W., Cardoso, M. P.& Ahrens, L. H. 1978. Hafnium, 72 D-E In Wedepohl, K. H. (ed.) Handbook of Geochemistry II–5. Berlin: Springer.Google Scholar
Fleischer, M. 1955. Hafnium content and hafnium-zirconium ratio in minerals and rocks. US Geological Survey Bulletin 1021–A.Google Scholar
Gagnol, I. 1987. Typologie et géochimie du zircon dans les laves alalincs differenciées (Thesis, University of Nice).Google Scholar
Goldschmidt, V. M. 1954. Geochemistry. Oxford: Clarendon Press.Google Scholar
Gottfried, D., Greenland, L. P.& Campbell, E. Y. 1968. Variation of Nb—Ta, Zr—Hf, Th—U and K—Ca in two diabase-granophyre suites. Geochimica et Cosmochimica Acta 32, 925–47.Google Scholar
Hevesy, G. von& Jantzen, V. T. 1925. The hafnium content of zirconium ores. Chemical News 130, 179.Google Scholar
Hoppe, G. 1963. Die Verwendbarkeit morphologischer Erscheinungen an akzessorischen Zirkonen für petrogenetische Auswertungen (Dissertation, University of Berlin).Google Scholar
Jablonska, J., Pupin, J. P.& Timcak, G. M. 1995. Morphological and microchcmical assessment of zircons in granite specimens from the Cierna Hora Mts (Western Carpathians). Geologica Carpathica 46, 241–51.Google Scholar
Knorring, O. von& Hornung, G. 1961. Hafnian zircons. Nature 190, 1098.Google Scholar
Köhler, H. 1968. Uber zirkone moldanubischer Granite (Dissertation, University of München).Google Scholar
Lameyre, J.& Bowden, P. 1982. Plutonic rock types series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research 14, 169–86.Google Scholar
Levinson, A. A.& Borup, R. A. 1960. High hafnium zircon from Norway. The American Mineralogist 45, 562.Google Scholar
Liégeois, J. P., Bertrand, J. M.& Black, R. 1987. The subduction-and collision-related Pan-African composite batholith of the Adrar des Iforas (Mali): a review. Geological Journal 22, 185211.Google Scholar
Liégeois, J. P.& Black, R. 1987. Alkaline magmatism subsequent to collision in the pan-African belt of the Adrar des Iforas In Fitton, J. G.& Upton, B. G. J. (eds) Alkaline Igneous Rocks, 381401. Oxford: Blackwell, for the Geological Society, London.Google Scholar
Lipova, I. M.& Mayeva, M. M. 1971. The relation of Zr/Hf ratio in zircon to crystal morphology. Geochemistry International 8, 785.Google Scholar
Lipova, I. M.& Shevaleevskii, I. D. 1961. On the Zr/Hf ratio in zircons from pegmatites of different compositions. Geochemistry 7, 686–90.Google Scholar
Martin, R.& Bonin, B. 1976. Water and magma genesis: the association hypersolvus granite–subsolvus granite, Canadian Mineralogist 14, 228–37.Google Scholar
Merz Arrcaza, C.& Persoz, F. 1992. L'intrusif Medel-Cristallina (massif du Gothard oriental). Partie II: déformations alpines et modifications chimiques. Schweizerische Mineralogische and Petrographische Mitteilungen 72, 179–96.Google Scholar
Pagel, M.& Leterrier, J. 1980. The subalkaline potassic magmatism of the Ballons massif (Southern Vosges, France): shoshonitic affinity. Lithos 13, 110.Google Scholar
Pavlenko, A. S., Vainshtein, E. E.& Shevaleevskii, I. D. 1957. On the hafnium-zirconium ratio in zircons of igneous and metasomatic rocks. Geochemistry 5, 411–31.Google Scholar
Pupin, J. P. 1976. Signification des caractères morphologiques du zircon commun des roches en petrologie. Base de la methode typologique. Applications (Thesis, University of Nice).Google Scholar
Pupin, J. P. 1978. Les zircons des roches volcaniques acides permiennes de l'Estérel: un nouvel argument pour une province magmatique permienne corso-provençale. Comptes Rendus de l'Académie des Sciences de Paris Ser. D 286, 173–6.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73, 207–20.Google Scholar
Pupin, J. P. 1981a. A propos des granites potassiques. Comptes Rendus de l'Académie des Sciences de Paris 287, II, 405–08.Google Scholar
Pupin, J. P. 1981b. Un type de zonalité magmatique dans la chaîne varisque d'Europe occidentale: les granites hercyniens du Massif Central français. Comptes Rendus de l'Academie des Sciences de Paris 293, II, 597600.Google Scholar
Pupin, J. P. 1985. Magmatic zoning of hercynian granitoids in France based on zircon typology, Schweizerische Mineralogische und Petrographische Mitteilungen 65, 2956.Google Scholar
Pupin, J. P. 1987. Origine des grès de la «dépression permienne» (Var. France) par la typologie des zircons. Consequenscs paléogéographiques. Geologie Alpine, Special Issue 13, 8190.Google Scholar
Pupin, J. P. 1988. Granites as indicators in paleogeodynamics. Rendiconti delta Societa Italiana di Mineralogia e Petrologia 43, 237–62.Google Scholar
Pupin, J. P. 1992. Les zircons des granites océaniques et continentaux: couplage typologie-géochimie des éléments en races. Bulletin de la Société Géologique de France 163, 495507.Google Scholar
Pupin, J. P. 1994. Caractérisation des protoliths des migmalites et granites anatectiques crustaux d'après l'étude des zircons. Comptes Rendus de l'Académie des Sciences de Paris 319, II, 1191–7.Google Scholar
Pupin, J. P. 1995. Discordant cores in zircons and granite genesis. In Brown, M.& Piccoli, P. (eds) The origin of granites and related rocks. Third Hutton Symposium - Abstracts. US Geological Survey Circular 1129, 118–19.Google Scholar
Pupin, J. P., Bonin, B., Tessier, M.& Turco, G. 1978. Rôle de l'eau sur les caractères morphologiques et la cristallisation du zircon dans les granitoïdes. Bulletin de la Société Géologique de France 20, 721–5.Google Scholar
Pupin, J. P., Cozzupoli, D., Dolfi, D., Negretti, G. C.& Gaeta, M. 1998. Granites and rhyolites of the magmatic complex of Monte Ferru (East Sardinia, Italy). In Erupted and non erupted granites Abstracts, International Volcanological Congress of the International Association of Volcanology and Chemistry of the Earth Interior., Cape Town, South Africa, I.A.V.C.E.I. Special Issue 48.Google Scholar
Pupin, J. P.& Persoz, F. 1999. Le zircon, marqueur de mélanges magmatiques à l'origine de granites de l'association subalcaline ferro-potassique. Comptes Rendus de l'Académie des Sciences de Paris 328, II, 916.Google Scholar
Pupin, J. P.& Turco, G. 1972a. Une typologie originale du zircon accessoire. Bulletin de la Société française de Minéralogie et de Cristallographie 95, 348–59.Google Scholar
Pupin, J. P.& Turco, G. 1972b. Le zircon accessoire en géothermométrie. Comptes Rendus de l'Académie des Sciences de Paris Ser. D 274, 2121–4.Google Scholar
Pupin, J. P.& Turco, G. 1974. Contrôle thermique du développement de la muscovite dans les granïtoldes et morphologic du zircon. Comptes Rendus de l'Académie des Sciences de Paris Ser. D 478, 2719–22.Google Scholar
Pupin, J. P.& Turco, G. 1975. Typologie du zircon accessoire dans les roches plutoniques dioritiques, granitiques et syenitiques. Facteurs essentiels déterminant les variations typologiques. Pétrologie 1, 139–56.Google Scholar
Ramakrishnan, S. S., Gokhale, K. V.& Subbarao, E. C. 1969. Solid solubility in the system Zircon-Hafnon. Material Research Bulletin 4, 323–8.Google Scholar
Raumer, J. F. von& Neubauer, F. 1993. Pre-Mesozoic Geology in the Alps. Berlin: Springer.Google Scholar
Reve, J. M. 1984. Les granites du massif du Kagenfels (Thesis, University of Orsay/Paris-Sud).Google Scholar
Shaw, D. M., Dostal, J.& Keays, R. 1976. Additional estimates of continental surface Precambrian shield composition in Canada. Geochimica et Cosmochimica Acta 40, 73.Google Scholar
Simoes, P. P., Pupin, J. P.& Dias, G. 1997. Utilizaçao do zircao como indicador genetico e evolutivo em granitoides hercinicos biotiticos associados ao cisalhamento Vigo-Regua (Norte de Portugal). X Semana de Geoquimica e IV Congresso de Geoquimica dos paises de Lingua Portuguesa. Braga, Portugal, Extended Abstracts, 147–50. Braga: University of Braga (ed.).Google Scholar
Taylor, S. R. 1976. Geochemical constraints on the compositin of the moon. Proceedings of the Seventh Lunar Science Conference. Geochimica et Cosmochimica Acta, Supplement 7, 3461.Google Scholar
Tugarinov, A. I., Vainshtcin, E. E.& Shevaleevskii, I. D. 1956. Hafnium-zirconium ratio in the zircons of igneous and metasomatic rocks. Geochemistry 4, 361–75.Google Scholar
Vavra, G. 1990. On the kinematics of zircon growth and its petrogenetic significance: a cathodolumincscence study, Contributions to Mineralogy and Petrology 106, 9099.Google Scholar
Veniale, F., Pigorini, B.& Soggetti, F. 1968. Petrological significance of the accessory zircon in the granites from Baveno, M.Orfano and Alzo (North Italy), In Proceedings of the 23th International Geology Congress, Czechoslovakia 13, 243–68.Google Scholar
Vidal, P. Cocherie, A.& Le Fort, P. 1982. Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta 46, 2279–92.Google Scholar
Vlasov, K. A. 1966. Geochemistry and mineralogy of rare elements and genetic types of their deposits. In Geochemistry of Rare Elements, Vol. 1 Jerusalem: Israel Program for Scientific Translations.Google Scholar
Wang, X. 1989. Typologie et géochimie du zircon: une approche nouvelle appliquée à la genèse des granites (Thesis, University of Nice).Google Scholar
Wang, X.& Pupin, J. P. 1992. Trace element geochemistry of zircon and its geological implications in the Argentera granite, France. Geological Review 38, 260–70.Google Scholar
Watson, E. B. 1979. zircon saturation in felsic liquids, experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology 70, 407–19.Google Scholar
Watson, E. B. 1996. Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geologic models and implications for isotopic inheritance. In Brown, M., Candela, P. A., Peck, D. L., Stephens, W. E., Walker, R. J. & Zen, E-an (eds) The origin of granites and related rocks. Third Hutton Symposium. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 4356.Google Scholar
Watson, E. B.& Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.Google Scholar
Yeliseyeva, O. P. 1974. On the types of distribution of uranium in accessory zircons. Geochemistry International 11, 960–67.Google Scholar