Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T14:57:10.136Z Has data issue: false hasContentIssue false

Granite and granitic pegmatite melts: volumes and viscosities

Published online by Cambridge University Press:  03 November 2011

D. B. Dingwell
Affiliation:
D. B. Dingwell, K.-U. Hess and R. Knoche, Bayerisches Geoinstitut,Universität Bayreuth, 95440 Bayreuth, Germany.
K.-U. Hess
Affiliation:
D. B. Dingwell, K.-U. Hess and R. Knoche, Bayerisches Geoinstitut,Universität Bayreuth, 95440 Bayreuth, Germany.
R. Knoche
Affiliation:
D. B. Dingwell, K.-U. Hess and R. Knoche, Bayerisches Geoinstitut,Universität Bayreuth, 95440 Bayreuth, Germany.

Abstract:

Progress in the understanding of the volumes and viscosities of granitic and related pegmatitic melts generated by experimental studies are reviewed. The results of a series of investigations of the volumes and viscosities of melts derived from a haplogranitic base composition, HPG8, located near the 2 kbar water-saturated minimum melt composition in the albite—orthoclase—silica system are discussed. Melt volumes, obtained using a combination of dilatometric and calorimetric methods at 1 atm and relatively low temperatures yield an internally consistent set of partial molar volumes for 18 components in granitic melts. These partial molar volumes, combined with an estimate for water, allow the estimation of melt densities for granitic and related pegmatitic magmas.

Melt viscosities, obtained using a combination of high and low range viscometry techniques, provide a template for the estimation of melt viscosities in more complex natural systems. The parameterisation of the non-Arrhenian temperature-dependence of the viscosity of such melts is presented, together with some structural implications of the variation of melt viscosity with temperature and composition. Outstanding questions related to the PVT equation of state of granitic melts and to the mechanical response to shear stresses are discussed, with an outlook for the experimental solutions to those questions in the next few years.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alidibirov, M.&Dingwell, D. B. 1996. Magmafragmentation by rapid decompression. NATURE 380, 146–9.Google Scholar
Bagdassarov, N.&Dingwell, D. B. 1992. A rheological investigation of vesicular rhyolite. J VOLCANOL GEOTHERM RES 50, 307–22.Google Scholar
Bagdassarov, N.&Dingwell, D. B. 1993a. Frequency-dependent rheology of vesicular rhyolite. J GEOPHYS RES 98, 6477–87.Google Scholar
Bagdassarov, N.&Dingwell, D. B. 1993b. Deformation of foamed rhyolites under internal and external stresses. BULL VOLCANOL 55, 147154Google Scholar
Bagdassarov, N., Dingwell, D. B.&Webb, S. L. 1994a. Viscoelasticity of crystal- and bubble-bearing rhyolite melts. PHYS EARTH PLANET INTER 83, 8399.CrossRefGoogle Scholar
Bagdassarov, N., Dorfman, A.&Dingwell, D. B. 1994b. Effect of alkalis on surfacé tension of haplogranite melts. EOS, TRANS AM GEOPHYS UNION 75, 724.Google Scholar
Burnham, C. W. 1963. Viscosity of a water-rich pegmatite. SPEC PAP GEOL SOC AM 76, 26.Google Scholar
Burnham, C. W.&Davis, N. F. 1971. The role of water in silicate melts: I. P–V–T relations in the system NaAlSi2O8–H2O to 10 kilobars and 1100°C. AM J SCI 270, 5479.Google Scholar
Burt, D. M., Bikun, J. V.&Christiansen, E. H. 1982. Topaz rhyolites: distribution, origin and significance for exploration. ECON GEOL 77, 1818–36.Google Scholar
Cerny, P., Meintzer, R. E.&Anderson, A. J. 1985. Extreme fractionation in rare-metal pegmatites: selected examples of data and mechanisms. CAN MINERAL 23, 381421.Google Scholar
Chakraborty, S., Dingwell, D. B.&Chaussidon, M. 1993. Chemical diffusion of boron in melts of haplogranitic composition. GEOCHIM COSMOCHIM ACTA 57, 1741–52.Google Scholar
Dingwell, D. B. 1987. Melt viscosities in the system NaAlSi3O8-H2O-F2O−1,. In Mysen, B. O. (ed.) Magmatic processes: physicochemical principles. GEOCHEM SOC SPEC PUBL 1, 423–33.Google Scholar
Dingwell, D. B. 1989. The effect of fluorine on the viscosity of diopside melt. AM MINERAL 174, 333–8.Google Scholar
Dinawell, D. B. 1990. Shear viscosities of galliosilicate liquids. AM MINERAL 75, 1231–7.Google Scholar
Dingwell, D. B. 1993. Experimental strategies for the investigation of low temperature properties in granitic and pegmatitic melts. CHEM GEOL 108, 1930.Google Scholar
Dingwell, D. B. 1995a. Relaxation in silicate melts: some applications. MIN SOC AM REV MINERAL 32, 2166.Google Scholar
Dingwell, D. B. 1995b. Viscosity and anelasticity of melts and glasses. In Ahrens, T. (ed.) Mineral physics and crystallography. A handbook of physical constants. AGU REF SHELF 2, 209217.Google Scholar
Dingwell, D. B. The glass transition in hydrous granitic melts. PHYS EARTH PLANET INT, in press.Google Scholar
Dingwell, D. B.&Webb, S. L. 1989. Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. PHYS CHEM MINERAL 16, 508–16.CrossRefGoogle Scholar
Dingwell, D. B.&Webb, S. L. 1990. Relaxation in silicate melts. EUR J MINERAL 2, 427–49.Google Scholar
Dingwell, D. B.. Knoche, R., Webb, S. L.&Pichavant, M. 1992. The effect of B2O3 on the viscosity of haplogranitic melts. AM MINERAL 77, 457–61.Google Scholar
Dingwell, D. B., Knoche, R.&Webb, S. L. 1993. The effect of fluorine on the density of haplogranitic melts. AM MINERAL 78, 325–30.Google Scholar
Dingwell, D. B., Romano, C.&Hess, K.-U. The effect of water on the viscosity of a haplogranitic melt under P—T—X—conditions relevant to silicic volcanism. CONTRIB MINERAL PETROL, in press.Google Scholar
Dorfman, A., Hess, K.-U.&Dingwell, D. B. Centrifuge-assisted falling sphere viscometry. EUR J MINERAL, in press.Google Scholar
Hess, K.-U., Dingwell, D. B.&Webb, S. L. 1995. The influence of excess alkalis on the viscosity of a haplogranitic melt. AM MINERAL 80, 297304.Google Scholar
Hess, K.-U., Dingwell, D. B.&Webb, S. L. 1996. The influence of alkaline earth oxides on the viscosity of granitic melts: systematics of non-Arrhenian behaviour. EUR J MINERAL 8, 371–81.Google Scholar
Hess, K.-U., Dingwell, D. B.&Rössler, E. Parameterization of viscosity temperature relationships of aluminosilicate melts. CHEM GEOL, in press.Google Scholar
Holtz, F., Behrens, H., Dingwell, D. B.&Taylor, R. 1992. Water solubility in aluminosilicate melts of haplogranitic composition at 2 kbar. CHEM GEOL 96, 289302.Google Scholar
Holtz, F., Behrens, H.&Dingwell, D. B. 1995. Water solubility in haplogranitic melts. Compositional pressure and temperature dependence. AM MINERAL 80, 94108.Google Scholar
Hurwitz, S.&Navon, O. 1994. Bubble nucleation in rhyolitic melts: experiments at high pressure temperature and water content. EARTH PLANET SCI LETT 122, 267–80.Google Scholar
Jahns, R. H.&Burnham, C. W. 1969. Experimental studies of pegmatite genesis I. A model for the derivation and crystallisation of granitic pegmatites. ECON GEOL 64, 843–64.Google Scholar
Knoche, R., Webb, S. L.&Dingwell, D. B. 1992. A partial molar volume for B2O3 in haplogranitic melts. CAN MINERAL 30, 561–9.Google Scholar
Knoche, R., Dingwell, D. B.&Webb, S.L. 1995. Leucogranitic and pegmatitic melt densities: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Rb2O, Cs2O, Li2O, BaO, SrO, CaO, MgO. TiO2, B2O3, P2O5, F2O−1, Ta2O5, Nb2O5. and WO3. GEOCHIM COSMOCHIM ACTA 59, 4645–52.Google Scholar
Kushiro, I. 1978a. Density and viscosity of hydrous calkalkaline andesite magma at high pressures. CARNEGIE INST WASHINGTON YEARB 77, 675–7.Google Scholar
Kushiro, I. 1978b. Viscosity and structural changes of albite (NaAlSi3O8) melt at high pressures. EARTH PLANET SCI LETT 41, 8790.Google Scholar
London, D. 1992. The application of experimental petrology to the genesis and crystallisation of granitic pegmatites. CAN MINERAL 30, 499540.Google Scholar
Manning, D. A. C. 1981. The effect of fluorine on liquidus phase relationships in the system qz–ab–or with excess water at 1 kb. CONTRIB MINERAL PETROL 76, 206–15.Google Scholar
Mungall, J., Bagdassarov, N.. Romano, C.&Dingwell, D. B. Numerical modelling of stress generation and microfracturing of vesicle walls in glassy rocks. J VOLCANOL GEOTHERM RES, in press.Google Scholar
Mungall, J., Dingwell, D. B.&Chaussidon, M. 1996. Trace element diffusion in synthetic granite and granitic pegmatite melts. GAC/MAC WINNIPEG ABSTR PROGRAM.Google Scholar
Naney, M. T.&Swanson, S. E. 1980. The effect of Fe and Mg on crystallisation in granitic systems. AM MINERAL 65, 639–53.Google Scholar
Nowak, M.&Behrens, H. 1995. The speciation of water in haplogranitic glasses and melts determined by in situ nearinfrared spectroscopy. GEOCHIM COSMOCHIM ACTA 59, 3445–50.Google Scholar
Persikov, E. S., Zharikov, V. A.. Bukhtiyarov, P. G.&Polskoy, S. F. 1990. The effects of volatiles on the properties of magmatic melts. EUR J MINERAL 2, 621–42.Google Scholar
Pichavant, M. 1981. An experimental study of the effect of boron on a water-saturated haplogranite at 1 kbar pressure: geological applications. CONTRIB MINERAL PETROL 76, 430–9.Google Scholar
Pichavant, M., Valencia Herrera, J., Boulmier, S.. Briqueu, L.. Joron, J.-L., Juteau, M., Marin, L., Michard, A., Sheppard, S. M. F., Treuil, M.&Vernet, M. 1987. The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. GEOCHEM SOC SPEC PUBL 1, 359–73.Google Scholar
Richet, P. 1984. Viscosity and configurational entropy of silicate melts. GEOCHIM COSMOCHIM ACTA 48, 471–84.Google Scholar
Richet, P., Lejeune, A-M., Holtz, F.&Roux, J. Water and the viscosity of andesite melts. CHEM GEOL, in press.Google Scholar
Romano, C, Bagdassarov, N., Dingwell, D. B.&Mungall, J. Strength and explosive behaviour of vesicular glassy lavas: experimental constraints. AM MINERAL, in press.Google Scholar
Rosenhauer, M., Scarfe, C. M. and Virgo, D. 1979. Pressure dependence of the glass transition in glasses of diopside. albite and sodium trisilicate composition. CARNEGIE INST WASHINGTON YEARB 78, 556–9.Google Scholar
Sakuyama, M.&Kushiro, I. 1979. Vesiculation of hydrous andesitic melt and transport of alkalis by separated vapour phase. CONTRIB MINERAL PETROL 71, 61–6.Google Scholar
Schairer, J. F.&Bowen, N. L. 1956. The system Na2O–Al2O3–SiO2. AM J SCI 254, 129–95.Google Scholar
Schulze, F., Behrens, H., Holtz, F.. Roux, J.&Johannes, W. The influence of water on the viscosity of a haplogranitic melt. AM MINERAL, in press.Google Scholar
Shaw, H. R. 1963. Obsidian—H2O viscosities at 1000 and 2000 bars in the temperature range 700 to 900°C. J GEOPHYS RES 68, 6337–43.CrossRefGoogle Scholar
Shaw, H. R. 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. AM J SCI 272, 870–89.Google Scholar
Shen, A.&Keppler, H.Infrared spectroscopy of hydrous silicate melts to 1000°C and lOkbars: direct observation of water speciation in a diamond anvil cell. AM MINERAL 80, 1335–8.Google Scholar
Sparks, R. S. J. 1978. The dynamics of bubble formation and growth in magmas. J VOLCANOL GEOTHERM RES 3, 137.Google Scholar
Sparks, R. S. J.. Barclay, J., Jaupart, C, Mader, H. M.&Phillips, J. C. 1994. Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesiculation. REV MINERAL 30, 413–45.Google Scholar
Stevenson, R. J., Dingwell, D. B., Webb, S. L.&Bagdassarov, N. S. 1995. The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid-glass transition in volcanic processes. J VOLCANOL GEOTHERM RES 68, 297306.Google Scholar
Thomas, R. 1995. Assessment of water content in granitic melts using melt inclusion homogenisation data: method–results–problems. In Brown, M.&Piccoli, Ph. M. (eds) The origin of granites and related rocks. Third Hutton Symposium—Abstracts. US GEOL SURV CIRC 1129, 145–6.Google Scholar
Tuttle, O. F.&Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2H2O. GEOL SOC AM MEM 74, 1154.Google Scholar
Webb, S. L., Knoche, R.&Dingwell, D. B. 1992. Determination of liquid expansivity using calorimetry and dilatometry. EUR J MINERAL 14, 95104.Google Scholar
Wong, J.&Angell, C. A. 1976. Glass structure by spectroscopy. New York: Dekker, 864 pp.Google Scholar