Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:17:18.005Z Has data issue: false hasContentIssue false

Fossil flower of Staphylea L. from the Miocene amber of Mexico: New evidence of the Boreotropical Flora in low-latitude North America

Published online by Cambridge University Press:  10 October 2018

Ana L. Hernández-Damián*
Affiliation:
Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, CDMX, México. Email: [email protected]
Sergio R. S. Cevallos-Ferriz*
Affiliation:
Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica, Del. Coyoacán, C.P. 04510, CDMX, México. Email: [email protected]
Alma R. Huerta-Vergara
Affiliation:
Posgrado en Ciencias de la Sostenibilidad, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, CDMX, México.
*
*Corresponding authors
*Corresponding authors

Abstract

A new flower preserved in amber in sediments of Simojovel de Allende, México, is identified as an extinct member of Staphyleaceae, a family of angiosperms consisting of only three genera (Staphylea, Turpinia and Euscaphis), which has a large and abundant fossil record and is today distributed over the Northern Hemisphere. Staphylea ochoterenae sp. nov. is the first record of a flower for this group, which is small, pedicelled, pentamer, bisexual, with sepals and petals with similar size, dorsifixed anthers and superior ovary. Furthermore, the presence of stamens with pubescent filaments allows close comparison with extant flowers of Staphylea bulmada and S. forresti, species currently growing in Asia. However, their different number of style (one vs. three) and the apparent lack of a floral disc distinguish them from S. ochoterenae. The presence of Staphyleaceae in southern Mexico ca. 23 to 15My ago is evidence of the long history of integration of vegetation in low-latitude North America, in which some lineages, such as Staphylea, could move southwards from high latitudes of the Northern Hemisphere, as part of the Boreotropical Flora. In Mexico it grew in association with tropical elements, as suggested by the fossil record of the area.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Allison, R. C. 1967. The Cenozoic stratigraphy of Chiapas, México, with discussions of the classification of the Turritellidae and selected Mexican representatives. Unpublished PhD Thesis, University of California, Berkeley, USA.Google Scholar
Angiosperm Phylogeny Group (APG). 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 120.Google Scholar
Axelrod, D. I. 1958. Evolution of the Madro-Tertiary Geoflora. The Botanical Review 24, 434509.Google Scholar
Bousfield, E. L. & Poinar, G. O. 1994. A new terrestrial amphipod from Tertiary amber deposits of Chiapas province, southern Mexico. Historical Biology 7, 105114.Google Scholar
Brown, R. W. 1933. Fossil plants from the Aspen shale of southwestern Wyoming. Proceedings of the United States National Museum 82, 110.Google Scholar
Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. U.S. Geological Survey Professional Paper 375, 1–119.Google Scholar
Carranza-González, E. 2004. Staphyleaceae. Flora del Bajío y Regiones Adyacentes 122, 16. Michoacán: Instituto de Ecología, Centro Regional del Bajío Pátzcuaro.Google Scholar
Castañeda-Posadas, C. & Cevallos-Ferriz, S. R. S. 2007. Swietenia (Meliaceae) flower in Late Oligocene-Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. American Journal of Botany 94, 18211827.Google Scholar
Cevallos-Ferriz, S. R. S., González-Torres, E. & Calvillo-Canadell, L. 2012. Perspectiva paleobotánica y geológica de la biodiversidad de México. Acta Botánica Mexicana 100, 317350.Google Scholar
Chambers, K. L., Poinar, G. O. & Brown, A. E. 2012. A new fossil species of Colpothrinax (arecaceae) from Mid-Tertiary Mexican amber. Journal of the Botanical Research Institute of Texas 6, 557560.Google Scholar
Cronquist, A. 1981. An integrated system of classification of flowering plants, 791793. New York: Columbia University Press.Google Scholar
Dickinson, W. C. 1986. Floral morphology and anatomy of Staphyleaceae. Botanical Gazette 147, 312326.Google Scholar
Diego-Pérez, N. & Fonseca, R. M. 2000. Estudios Florísticos en Guerrero. Lagunas de Playa Blanca, El Potosi, Salinas del Cuajo y Zonas Circundantes, 133. México, DF: Facultad de Ciencias, UNAM.Google Scholar
Dorofeev, P. I. 1963. The Tertiary Floras of Western Siberia. 209211. Moscow: Institute Academy of Sciences of the U.S.S.R.Google Scholar
Frost, S. H. & Langenheim, R. L. 1974. Cenozoic reef biofacies, tertiary larger foraminifera and scleractinian corals from Chiapas, Mexico. 1388. Illinois: Northern Illinois University Press, De Kalb.Google Scholar
Gómez-Bravo, A. I. 2005. Estudio taxonómico de una estructura floral conservada en ámbar de Simojovel de Allende, Chiapas, México. Unpublished Thesis, Escuela de Biología, Universidad de Ciencias y Artes de Chiapas, Mexico.Google Scholar
González-Villarreal, L. M. & Jiménez-Reyes, Ma. N. 2006. La familia Staphyleaceae en el Estado de Jalisco, México, 119. Guadalajara: Universidad de Guadalajara.Google Scholar
Gregor, H. J. 1978. The Miocene fruit- and seed-floras of the Oberpfalz Browncoal. I. Findings from the sandy interbeds. Palaeontographica (Abt. B) 167, 8–103.Google Scholar
Harris, A. J., Chen, P.-T., Xu, X.-W., Zhang, J.-Q., Yang, X. & Wen, J. 2017. A molecular phylogeny of Staphyleaceae: implications for generic delimitation and classical biogeographic disjunctions in the family. Journal of Systematics and Evolution 55, 118.Google Scholar
Hollick, A. 1929. New species of fossil plants from the Tertiary shales near De Beque, Colorado. Bulletin of the Torrey Botanical Club 56, 9396.Google Scholar
Huang, Y.-J., Liu, Y.-S., Wen, J. & Quan, C. 2015. First fossil record of Staphylea l. (Staphyleaceae) from North America, and its biogeographic implications. Plant Systematics and Evolution 301, 22032218.Google Scholar
Kevin Nixon's Families of Dicotyledons (onwards). Plantsystematics. http://www.plantsystematics.org (accessed 28 August 2012).Google Scholar
Kirchheimer, F. 1957. Die laubgewächse der Braunkohlenzeit mit einem kritischen Katalog Ihrer Früchte und Samen, 712713. Halle: Knapp Verlag.Google Scholar
Knowlton, F. H. 1917. Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. U.S. Geological Survey Professional Paper 101, 223435.Google Scholar
Langenheim, J. H. 1966. Botanical source of amber from Chiapas, Mexico. Ciencia 24, 201211.Google Scholar
Langenheim, J. H., Hackner, B. L. & Bartlett, A. 1967. Mangrove pollen at depositional site of Oligo-Miocene amber from Chiapas, México. Botanical Museum Leaflets, Harvard University 21, 289324.Google Scholar
Latham, R. E. & Ricklefs, R. E. 1993. Continental comparisons of temperate-zone tree species diversity. In Ricklefs, R. E. & Schluter, D. (eds) Species diversity in ecological communities: Historical and geographical perspectives, 294314. Chicago: Chicago University Press.Google Scholar
Li, D., Cai, J. & Wen, J. 2008. Staphyleaceae. In Wu, Z. Y. & Raven, P. H. (eds) Flora of China, 498504. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.Google Scholar
Licari, G. R., 1960. Geology and Amber Deposits of the Simojovel Area, Chiapas, Mexico. Unpublished Masters Thesis, University of California, Berkeley, USA.Google Scholar
MacGinitie, H. D. 1953. Fossil plants of the Florissant beds, Colorado. Carnegie Institution of Washington Publisher 599, 1–198.Google Scholar
Meneses-Rocha, J. J. 2001. Tectonic evolution of the Ixtapa graben, an example of a strike-slip basin in southeastern Mexico: implications for regional petroleum systems. In Bartolini, C., Buffler, R. T. & Cantú-Chapa, A. (eds) The Western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems, 183216. Oklahoma: American Association of Petroleum Geologists.Google Scholar
Milliken, W., Klitgård, B. & Baract, A. 2009 onwards. Neotropikey-Interactive key and information resources for flowering plants of the Neotropics. http://www.kew.org/neotropikey (accessed 24 April 2013).Google Scholar
Miranda, F. 1963. Two plants from the amber of the Simojovel, Chiapas, Mexico area. Journal of Paleontology 36, 611614.Google Scholar
Murguía, M. & Villaseñor, J. L. 1993. FAMEX: Clave para familias de plantas con flores (Magnoliophyta) de México. Mexico, DF: Asociación de Biólogos Amigos de la computación, AC México.Google Scholar
Pax, F. 1893. Staphyleaceae. In Engler, A. & Prantl, K. (eds) Die natürlichen Pflanzenfamilien II, 5, 258262. Leipzig: W. Engelmann.Google Scholar
Peinado-Lorca, M., Macías-Rodríguez, M. A., Aguirre-Martínez, J. L. & Delgadillo-Rodríguez, J. 2009. Fitogeografía de la costa del Pacífico de Norteamérica. Anales del Jardín Botánico de Madrid 66, 151194.Google Scholar
Poinar, G. O. 2003. Coelomycetes in Dominican and Mexican amber. Mycological Research 107, 117122.Google Scholar
Poinar, G. O. & Brown, A. E. 2002. Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society 139, 125132.Google Scholar
Raven, P. H. & Axelrod, D. I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61, 539673.Google Scholar
Ronse De Craene, L. P. 2010. Floral diagrams an aid to understanding flower morphology and evolution, 217247. New York: Cambridge University Press.Google Scholar
Santiago-Blay, J. A. & Poinar, G. O. Jr. 1993. First scorpion (Buthidae: Centruroides) from Mexican amber (lower Miocene to upper Oligocene). Journal of Arachnology 21, 147151.Google Scholar
Serrano-Sánchez, M. de L., Hegna, T. A., Schaaf, P., Pérez, L., Centeno-García, E. & Vega, F. J. 2015. The aquatic and semiaquatic biota in Miocene amber from the Campo LA Granja mine (Chiapas, Mexico): Paleoenvironmental implications. Journal of South American Earth Sciences 62, 243256.Google Scholar
Serrano-Sánchez, M. de L., Guerao, G., Centeno-García, E. & Vega, F. J. 2016. Crabs (Brachyura: Grapsoidea: Sesarmidae) as inclusions in Lower Miocene amber from Chiapas, Mexico. Boletín de la Sociedad Geológica Mexicana 68, 3743.Google Scholar
Simmons, S. 2002. A Molecular Phylogenetic Investigation of the Staphyleaceae (DC.) Lindl.: With Implications for its Taxonomy and Biogeography. Unpublished PhD Thesis, University of Texas at Austin, Austin, TX, USA.Google Scholar
Simmons, S. L. 2007. Staphyleaceae. In Kubitzki, K. (ed.) Flowering plants. Eudicots. The families and genera of vascular plants, 9, 440445. Heidelberg: Springer-Verlag.Google Scholar
Simpson, M. G. 2010. Plant systematic. 300320. San Diego: Elsevier Academic Press.Google Scholar
Solórzano-Kraemer, M. M. 2007. Systematic, paleoecology and paleobiogeography of the insect fauna from the Mexican amber. Palaeontographica (Abt. A) 282, 133.Google Scholar
Solórzano-Kraemer, M. M. 2010. Mexican amber. In Panney, D. (ed.) Biodiversity of fossil in amber from the major world deposits, 4256. Manchester: Siri Scientific Press.Google Scholar
Solórzano-Kraemer, M. M. & Mohrig, W. 2007. Schwenckfeldina archoica sp. nov. (Diptera, Sciaridae) from the middle Miocene Mexican amber. Alavesia 1, 105158.Google Scholar
Sosa, V. 1988. Staphyleaceae. Flora de Veracruz 57, 111.Google Scholar
Takhtajan, A. 1980. Outline of the classification of flowering plants (Magnoliophyta). Botanical Review 46, 225359.Google Scholar
Tomasini-Ortiz, A. C. & Martínez-Hernández, E. 1984. Palinología del Eoceno-Oligoceno de Simojovel, Chiapas. Paleontología Mexicana 50, 160.Google Scholar
Vega, F. J., Torrey-Nyborg, M. A., Coutaño, J. S. & Hernández-Monzón, O. 2009. Neogene Crustacea form sutheasern Mexico. Bulletin of Mizunami Fossil Museum 35, 5169.Google Scholar
Veiga-Crespo, P., Blasco, L., Poza, M. & Villa, T. G. 2007. Putative ancient microorganisms from amber nuggets. International Microbiology 10, 117122.Google Scholar
Watson, L. & Dallwitz, M. J. 1992 onwards. The families of flowering plants: Descriptions, illustrations, identification, and information retrieval. http://delta-intekey.com/angio (accessed 3 July 2013).Google Scholar
Wichard, W., Solórzano-Kraemer, M. M. & Luer, C. 2006. First caddisfly species from Mexican amber (Insecta: Trichoptera). Zootaxa 1378, 3748.Google Scholar
Wolfe, J. A. 1975. Some aspects of plant geography of the Northern Hemisphere during the late cretaceous and tertiary. Annals of the Missouri Botanical Garden 62, 264279.Google Scholar