Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T09:45:41.681Z Has data issue: false hasContentIssue false

Feeding structures in the ray-finned fish Eurynotus crenatus (Actinopterygii: Eurynotiformes): implications for trophic diversification among Carboniferous actinopterygians

Published online by Cambridge University Press:  11 December 2018

Matt FRIEDMAN*
Affiliation:
Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA. Email: [email protected]
Stephanie E. PIERCE
Affiliation:
Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
Michael COATES
Affiliation:
Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA.
Sam GILES
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. Current Address: School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
*
*Corresponding author

Abstract

The Permo-Carboniferous eurynotiforms show conspicuous modifications to postcranial and cranial morphology relative to primitive actinopterygian conditions, and represent an important early example of functional experimentation within ray-finned fishes. Although eurynotiforms are represented by abundant articulated fossil material, the internal anatomy of the group is not well known. Microcomputed tomography (μCT) of Eurynotus crenatus from the early Carboniferous (Viséan) Wardie Shales Member of the Gullane Formation of Wardie, Scotland provides detailed information on the jaws, palate and dentition. The lower jaw is deep and bears a well-developed convex dental plate on the prearticular/coronoids. The dentary bears a dorsally directed posterior process and lacks any obvious marginal dentition. The prearticular bears a low coronoid process. Apart from the first and second dermopalatines, and a likely accessory vomer, bones of the palate are tightly sutured or fused. The upper dental plate comprises a longitudinal, concave horizontal dental surface that occludes with the convex lower toothplate, and a more vertical region consisting of anastomosing ridges. The parasphenoid has a narrow anterior corpus and a broad posterior stalk that bears a pronounced midline notch. The smooth, irregularly punctated surfaces of the dental plates are formed by closely packed teeth with conjoined crowns, providing clues to the evolution of the more monolithic toothplates of Amphicentrum from the peg-like teeth reported in the earliest and most anatomically generalised eurynotiforms. The feeding apparatus shows many qualitative and quantitative features consistent with the processing of hard prey items. Eurynotus and its relatives show the first clear example of jaw and dental structures consistent with durophagy among actinopterygians. The origin of the group in the early Carboniferous is suggestive of diversification into newly available ecological roles in the aftermath of the end-Devonian extinction.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Agassiz, L. 1835. Recherches sur les poissons fossiles. Tome II. Neuchatel: Imprimerie de Petitpierre. xii+336 pp.+LXXV pls.Google Scholar
Ahlberg, P. E., Smith, M. M. & Johanson, Z. 2006. Developmental plasticity and disparity in early dipnoan (lungfish) dentitions. Evolution & Development 8, 331349.Google Scholar
Ahlberg, P. E. & Trewin, N. H. 1995. The postcranial skeleton of the Middle Devonian lungfish Dipterus valenciennesi. Transactions of the Royal Society of Edinburgh: Earth Sciences 85, 159175.Google Scholar
Anderson, J. S., Carroll, R. L. & Rowe, T. B. 2003. New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda. Canadian Journal of Earth Sciences 40, 10711083.Google Scholar
Anderson, P. S., Friedman, M., Brazeau, M. D. & Rayfield, E. J. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476, 206209.Google Scholar
Bardack, D. 1997. Fishes: ‘Agnatha', Acanthodii, and Osteichthyes. In Shabica, C. W. & Hay, A. A. (eds) Richardson's guide to the fossil fauna of Mazon Creek, 226243. Chicago: Northeastern Illinois University.Google Scholar
Barel, C. D. N. 1983. Toward a constructional morphology of cichlid fishes (Teleostei, Perciformes). Netherlands Journal of Zoology 33, 357424.Google Scholar
Bellwood, D. R. 2003. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29, 7183.Google Scholar
Bemis, K. E., Tyler, J. C., Bemis, W. E., Kumar, K., Rana, R. S. & Smith, T. 2017. A gymnodont fish jaw with remarkable molariform teeth from the early Eocene of Gujarat, India (Teleostei, Tetraodontiformes). Journal of Vertebrate Paleontology 37, e1369422.Google Scholar
Bemis, W. E. 1986. Feeding systems of living Dipnoi: anatomy and function. Journal of Morphology 190(Suppl.), 249275.Google Scholar
Böttcher, R. 2014. Phyllodont tooth plates of Bobasatrania scutata (Gervais, 1852) (Actinopterygii, Bobasatraniiformes) from the Middle Triassic (Longobardian) Grenzbonebed of southern Germany and eastern France, with an overview of Triassic and Palaeozoic phyllodont tooth plates. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 274, 291311.Google Scholar
Boulenger, G. A. 1902. VIII. – Further remarks on the Carboniferous Ganoid, Benedenius deneensis, Traquair. Journal of Natural History 10, 5253.Google Scholar
Bradley Dyne, M. 1939. The skull of Amphicentrum granulosum. Proceedings of the Zoological Society of London, Series B 1939, 195210.Google Scholar
Campbell, K. S. W. & Barwick, R. E. 1990. Paleozoic dipnoan phylogeny: functional complexes and evolution without parsimony. Paleobiology 16, 143169.Google Scholar
Case, E. C. 1931. Arthodiran remains from the Devonian of Michigan. Contributions from the Museum of Paleontology 3, 163182.Google Scholar
Case, E. C. 1937. The brain and skull of a paleoniscid fish from the Pennsylvanian of western Missouri. Proceedings of the American Philosophical Society 78, 110.Google Scholar
Chang, M.-M. 1995. Diabolepis and its bearing on the relationships between porolepiforms and dipnoans. Bulletin du Muséum national d'Histoire naturelle, Paris, 4e série, Section C 17, 235268.Google Scholar
Chisholm, J. I., McAdam, A. D. & Brand, P. J. 1989. Lithostratigraphical classification of Upper Devonian and Lower Carboniferous rocks in the Lothians. British Geological Survey Technical Report WA/89/26.Google Scholar
Chisholm, J. I. & Brand, P. J. 1994. Revision of the late Dinantian sequence in Edinburgh and West Lothian. Scottish Journal of Geology 30, 97104.Google Scholar
Choo, B. 2012. Revision of the actinopterygian genus Mimipiscis (=Mimia) from the Upper Devonian Gogo Formation of Western Australia and the interrelationships of the early Actinopterygii. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 77104.Google Scholar
Choo, B., Zhu, M., Zhao, W., Jia, L. & Zhu, Y.-A. 2014. The largest Silurian vertebrate and its palaeoecological implications. Scientific Reports 4, 5242.Google Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology & Evolution 1, 0002.Google Scholar
Clarkson, E. N. K. 1985. Palaeoecology of the Dinantian of Foulden, Berwickshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 97100.Google Scholar
Claverie, T. & Wainwright, P. C. 2014. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS One 9, e112732.Google Scholar
Close, R. A., Johanson, Z., Tyler, J. C., Harrington, R. C. & Friedman, M. 2016. Mosaicism in a new Eocene pufferfish highlights rapid morphological innovation near the origin of crown tetraodontiforms. Palaeontology 59, 499514.Google Scholar
Coates, M. I. 1993. New actinopterygian fish from the Namurian Manse Burn Formation of Bearsden, Scotland. Palaeontology 36, 123146.Google Scholar
Coates, M. I. 1994. Actinopterygian and acanthodian fishes from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 317327.Google Scholar
Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. In Norman, D. B., Milner, A. R. & Milner, A. C. (eds) A study of fossil vertebrates, 122, 2759. London: Zoological Journal of the Linnean Society.Google Scholar
Coates, M. I. 1999. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society of London, Series B 354, 435462.Google Scholar
Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E. & Tietjen, K. 2017. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541, 208211.Google Scholar
Coates, M. I. & Sequeira, S. E. K. 2001. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. Journal of Vertebrate Paleontology 21, 438459.Google Scholar
Coates, M. I. & Tietjen, K. 2018. The neurocranium of the Lower Carboniferous shark Tristychius arcuatus (Agassiz, 1837). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, 1935.Google Scholar
Coates, M. I. & Tietjen, K. 2019. ‘This strange little palaeoniscid': a new early actinopterygian genus, and commentary on pectoral fin conditions and function. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. DOI: 10.1017/S1755691018000403.Google Scholar
Crofts, S. B. & Summers, A. P. 2014. How to best smash a snail: the effect of tooth shape on crushing load. Journal of the Royal Society Interface 11, 20131053.Google Scholar
Currie, E. D. 1954. Scottish carboniferous goniatites. Transactions of the Royal Society of Edinburgh 62, 527602+IV pls.Google Scholar
Darras, L., Derycke, C., Blieck, A. & Vachard, D. 2008. The oldest holocephalan (Chondrichthyes) from the Middle Devonian of the Boulonnais (Pas-de-Calais, France). Comptes Rendus Palevol 7, 297304.Google Scholar
Davydov, V. I., Korn, D. & Schmitz, M. D. 2012. The carboniferous period. In Gradstein, F. M., Schmitz, M. & Ogg, G. (eds) The geologic timescale 2012, 1, 603651. Amsterdam: Elsevier.Google Scholar
De Koninck, L. G. 1878. Fauna du Calcaire carbonifère de la Belgique. Annales du Museé Royal d'Historie Naturelle de Belgique 2, 1152+31 pls.Google Scholar
Denison, R. 1978. Placodermi. In Schultze, H.-P. (ed.) Handbook of paleoichthyology, 2, 1128. Suttgart: Gustav Fischer Verlag.Google Scholar
Denison, R. H. 1985. A new ptyctodont placoderm, Ptyctodopsis, from the Middle Devonian of Iowa. Journal of Paleontology 59, 511522.Google Scholar
Dick, J. R. F. 1978. On the carboniferous shark Tristychius arcuatus Agassiz from Scotland. Transactions of the Royal Society of Edinburgh 70, 63109.Google Scholar
Dick, J. R. F. 1981. Diplodoselache woodi, gen. et sp. nov. an early carboniferous shark from the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 72, 99113.Google Scholar
Dick, J. R. F. 1998. Sphenacanthus, a Palaeozoic freshwater shark. Zoological Journal of the Linnean Society 122, 925.Google Scholar
Dineley, D. L. & Metcalf, S. J. 1999. Fossil fishes of Great Britain. Peterborough: Joint Nature Conservation Committee.Google Scholar
Egerton, P. D. G. 1850. Palichthyologic notes. No. 3. – on the Ganoidei Heterocerci. Quarterly Journal of the Geological Society of London 6, 110+II pls.Google Scholar
Finarelli, J. A. & Coates, M. I. 2012. First tooth-set outside the jaws in a vertebrate. Proceedings of the Royal Society B 279, 775–9.Google Scholar
Friedman, M. 2015. The early evolution of ray-finned fishes. Palaeontology 58, 213228.Google Scholar
Friedman, M. & Giles, S. 2016. Actinopterygians: the ray-finned fishes – an explosion of diversity. In Clack, J. A., Fay, R. & Popper, A. (eds) Evolution of the vertebrate ear. Springer Handbook of Auditory Research, 59, 1749. Berlin: Springer Verlag.Google Scholar
Friedman, M. & Sallan, L. C. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707742.Google Scholar
Gardiner, B. G. 1963. Certain palaeoniscoid fishes and the evolution of the snout in actinopterygians. Bulletin of the British Museum Natural History): Geology 8, 255325+II pls.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History): Geology 37, 173428.Google Scholar
Gardiner, B. G. & Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society 97, 135187.Google Scholar
Giles, S., Darras, L., Clément, G., Blieck, A. & Friedman, M. 2015. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes. Proceedings of the Royal Society B 282, 20151485.Google Scholar
Giles, S., Xu, G.-H., Near, T. J. & Friedman, M. 2017. Early members of ‘living fossil' lineage imply later origin of modern ray-finned fishes. Nature 549, 265268.Google Scholar
Giles, S. & Friedman, M. 2014. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii). Journal of Paleontology 88, 636651.Google Scholar
Greensmith, J. T. 1962. Rhythmic deposition in the Carboniferous Oil-Shale Group of Scotland. The Journal of Geology 70, 355364.Google Scholar
Hamel, M. H. & Poplin, C. 2008. The braincase anatomy of Lawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (USA). Journal of Vertebrate Paleontology 28, 9891006.Google Scholar
Henrichsen, I. G. C. 1970. A catalogue of fossil vertebrates in the Royal Scottish Museum, Edinburgh. Part One/Actinopterygii. Royal Scottish Museum, Information Series, Geology 1, ix+1–102.Google Scholar
Hlavin, W. J. & Boreske, J. R. Jr. 1973. Mylostoma variabile Newberry, an Upper Devonian durophagous brachythoracid arthrodire, with notes on related taxa. Berviora 412, 112.Google Scholar
Latimer, A. E. & Giles, S. 2018. A giant dapediid from the Late Triassic of Switzerland and insights into neopterygian phylogeny. Royal Society Open Science 5, 180497.Google Scholar
Lloyd, G. T., Wang, S. C. & Brusatte, S. L. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330348.Google Scholar
Lombardo, C. & Tintori, A. 2005. Feeding specializations in Late Triassic fishes. Annali dell'Università degli Studi di Ferrara, Museologia Scientifica e Naturalistica, Volume Speciale 2005, 2532.Google Scholar
López-Arbarello, A. & Sferco, E. 2011. New semionotiform (Actinopterygii: Neopterygii) from the Late Jurassic of southern Germany. Journal of Systematic Palaeontology 9, 197215.Google Scholar
Mark-Kurik, E. 1977. The structure of the shoulder girdle in early ptyctodontids. In Menner, V. V. (ed.) Ocherki po filogenii i sistemaike iskopaemykh myb i beschelyustryck [Sketches in phylogenesis and taxonomy of fossil fishes and Agnatha], 6170. Moscow: Nauk.Google Scholar
Monoghan, A. A., Browne, M. A. E. & Barford, D. N. 2014. An improved chronology for the Arthur's Seat volcano and Carboniferous magmatism of the Midland Valley of Scotland. Scottish Journal of Geology 50, 165172.Google Scholar
Moodie, R. L. 1915. A new fish brain from the coal measures of Kansas with a review of other fossil brains. Journal of Comparative Neurology 25, 135181.Google Scholar
Moodie, R. L. 1920. Microscopic examination of a fossil fish brain. Journal of Comparative Neurology 32, 329333.Google Scholar
Mottequin, B., Pouty, E. & Prestianni, C. 2015. Catalogue of types and illustrated specimens recovered from the ‘black marble' of Denée, a marine conservation-Lagerstätte from the Mississippian of southern Belgium. Geologica Belgica 18, 114.Google Scholar
Moy-Thomas, J. A. 1939. Palaeozoic fishes. London: Methuen.Google Scholar
Moy-Thomas, J. A. & Bradley Dyne, M. 1938. Actinopterygian fishes from the Lower Carboniferous of Glencartholm, Eksdale, Dumfriesshire. Transactions of the Royal Society of Edinburgh 59, 437480.Google Scholar
Nielsen, E. 1942. Studies on Triassic fishes from East Greenland. I. Glaucolepis and Boresomus. Meddelelser om Grønland 138, 1403+30 pls.Google Scholar
Nielsen, E. 1949. Studies on Triassic Fishes. II. Australosomus and Birgeria. Meddelelser om Grønland 146, 1309+20 pls.Google Scholar
Nursall, J. R. 1999. The family †Mesturidae and the skull of pycnodont fishes. In Arratia, G. & Schultze, H.-P. (eds) Mesozoic fishes 2 – systematics and fossil record, 153182. Munich: Verlag Dr Friedrich Pfeil.Google Scholar
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. 2017. Hidden morphological diversity among early tetrapods. Nature 546, 642645.Google Scholar
Poplin, C. M. 1974. Étude de quelques paléoniscidés pennsylvaniens du Kansas. Cahiers de Paléontologie, Paris: Éditions du CNRS. 151 pp.+XL pls.Google Scholar
Poplin, C. M. 1984. Lawrenciella schaefferi n.g., n.sp. (Pisces: Actinopterygii) and the use of endocranial characters in the classification of the Palaeonisciformes. Journal of Vertebrate Paleontology 4, 413421.Google Scholar
Poplin, C. M. & Véran, M. 1996. A revision of the actinopterygian fish Coccocephalichthys wildi from the Upper Carboniferous of Lancashire. In Milner, A. R. (ed.) Studies on Carboniferous and Permian vertebrates. Special Papers in Palaeontology, 52, 729. London: Palaeontological Association.Google Scholar
Pradel, A., Maisey, J. G., Mapes, R. H. & Kruta, I. 2016. First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase of Lawrenciella poplin, 1984 from the Carboniferous of Oklahoma. Geodiversitas 38, 489504.Google Scholar
Rayner, D. H. 1952. On the cranial structure of an early palæoniscid, Kentuckia, gen. nov. Transactions of the Royal Society of Edinburgh 62, 5383.Google Scholar
Richards, K. R., Sherwin, J. E., Smithson, T. R., Bennion, R. F., Davies, S. J., Marshall, J. E. A. & Clack, J. A. 2018. Diverse and durophagous: early Carboniferous chondrichthyans from the Scottish Borders. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, 6787.Google Scholar
Rieppel, O. 2002. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society 135, 3363.Google Scholar
Romer, A. S. 1966. Vertebrate paleontology, 3rd edn. Chicago: University of Chicago Press.Google Scholar
Sallan, L. C. 2014. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biological Reviews 89, 950971.Google Scholar
Sallan, L. C., Kammer, T. W., Ausich, W. I. & Cook, L. A. 2011. Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences of the USA 108, 83358338.Google Scholar
Sallan, L. C. & Coates, M. I. 2010. Proceedings of the National Academy of Sciences of the USA 107, 1013110135.Google Scholar
Sallan, L. C. & Coates, M. I. 2013. Styracopterid (Actinopterygii) ontogeny and the multiple origins of post-Hangenberg deep-bodied fishes. Zoological Journal of the Linnean Society 169, 156199.Google Scholar
Sallan, L. C. & Friedman, M. 2012. Heads or tails: staged diversification in vertebrate evolutionary radiations. Proceedings of the Royal Society of London B 279, 20252032.Google Scholar
Sallan, L. C. & Galimberti, A. K. 2015. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812815.Google Scholar
Schaeffer, B. & Dalquest, W. W. 1978. A palaeonisciform braincase from the Permian of Texas, with comments on cranial fissures and the posterior myodome. American Museum Novitates 2658, 115.Google Scholar
Schaeffer, B. & Rosen, D. E. 1961. Major adaptive levels in the evolution of the actinopterygian feeding mechanism. American Zoologist 1, 187204.Google Scholar
Schram, F. R. 1983. Lower Carboniferous biota of Glencartholm, Eksdale, Dumfriesshire. Scottish Journal of Geology 19, 115.Google Scholar
Signor, P. W. III & Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10, 229245.Google Scholar
Smithson, T. R., Wood, S. P., Marshall, J. E. & Clack, J. A. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap. Proceedings of the National Academy of Sciences of the USA 109, 4532–7.Google Scholar
Smithson, T. R., Richards, K. R. & Clack, J. A. 2016. Lungfish diversity in Romer's Gap: reaction to the end-Devonian extinction. Palaeontology 59, 2944.Google Scholar
Smithwick, F. M. 2015. Feeding ecology of the deep-bodied fish Dapedium (actinopterygii, Neopterygii) from the Sinemurian of Dorset, England. Palaeontology 58, 293311.Google Scholar
Stahl, B. 1999. Chondrichthyes III, Holocephali. In Schultze, H.-P. (ed.) Handbook of paleoichthyology, 4, 1164. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Sumner, D. 1991. Palaeobiology, taphonomy and diagenesis of a Lower Carboniferous fish fauna. Unpublished PhD thesis, University of St Andrews, UK. 336 pp.Google Scholar
Thies, D. & Herzog, A. 1999. New information on Dapedium LEACH 1822 (Actinopterygii, Seminotiformes). In Arratia, G. & Schultze, H.-P. (eds), Mesozoic Fishes 2 – Systematics and Fossil Record, 143152. Munich: Verlag Dr Friedrich Pfeil.Google Scholar
Tintori, A. 1998. Fish biodiversity in the marine Norian (Late Triassic) of northern Italy: the first neopterygian radiation. Italian Journal of Zoology 65(Suppl.), 193198.Google Scholar
Traquair, R. H. 1867. Description of Pygopterus greenockii, with notes one the structural relations of the genera Pygopterus, Amblypterus and Eurynotus. Transactions of the Royal Society of Edinburgh 24, 701713+I pl.Google Scholar
Traquair, R. H. 1875. On some fossil fishes from the neighbourhood of Edinburgh. Journal of Natural History 15, 258268+I pl.Google Scholar
Traquair, R. H. 1877–1914. The Ganoid fishes of the British Carboniferous Formations. Part I. Palæoniscidae. London: Palaeontolographical Society.Google Scholar
Traquair, R. H. 1879. On the structure and affinities of the Playtsomidae. Transactions of the Royal Society of Edinburgh 29, 343391+IV pls.Google Scholar
Traquair, R. H. 1903. On the distribution of fossil fish-remains in the Carboniferous rocks of the Edinburgh district. Transactions of the Royal Society of Edinburgh 40, 687707.Google Scholar
Trinajstic, K. & Long, J. A. 2009. A new genus and species of ptyctodont (Placodermi) from the Late Devonian Gneudna Formation, Western Australia, and an analysis of ptyctodont phylogeny. Geological Magazine 146, 743760.Google Scholar
Tyler, J. C. 1980. Osteology, phylogeny, and higher classification of the fishes of the order Plectognathi (Tetraodontiformes). NOAA Technical Report NMFS Circular 434, 1422.Google Scholar
Ward, P., Labandeira, C., Laurin, M. & Berner, R. A. 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences of the USA 103, 1681816822.Google Scholar
Waters, C. N., Browne, M. A. E., Jones, N. S. & Somerville, I. D. 2011a. Midland valley of Scotland. In Waters, C. N. (ed.) A revised correlation of Carboniferous rocks in the British Isles. Special Report Number 26, 96102. London: The Geological Society.Google Scholar
Waters, C. N., Somerville, I. D., Stephenson, M. H., Cleal, C. J. & Long, S. L. 2011b. Biostratigraphy. In Waters, C. N. (ed.) A revised correlation of Carboniferous rocks in the British Isles. Special Report Number 26, 1122. London: The Geological Society.Google Scholar
Watson, D. M. S. 1925. On the structure of certain palæoniscids and the relationships of that group with other bony fish. Proceedings of the Zoological Society of London 1925, 815870+II pls.Google Scholar
Watson, D. M. S. 1928. On some points in the structure of palæoniscid and allied fish. Proceedings of the Zoological Society of London 1928, 4970.Google Scholar
Westneat, M. W. 2004. Evolution of levers and linkages in the feeding mechanisms of fishes. Integrative and Comparative Biology 44, 378389.Google Scholar
Westoll, T. S. 1949. On the evolution of the Dipnoi. In Jepsen, G. L., Simpson, G. G. & Mayr, E. (eds) Genetics paleontology and evolution, 121184. Princeton: Princeton University Press.Google Scholar
Wilson, C. D., Pardo, J. D. & Anderson, J. S. 2018. A primitive actinopterygian braincase from the Tournaisian of Nova Scotia. Royal Society Open Science 5, 171727.Google Scholar
Wilson, R. B. 1989. A study of the Dinantian marine microfossils of central Scotland. Transactions of the Royal Society of Edinburgh 80, 91126.Google Scholar
Wood, S. P. 1975. Recent discoveries of Carboniferous fishes in Edinburgh. Scottish Journal of Geology 11, 251258.Google Scholar
Wood, S. P. 1982. New basal Namurian (Upper Carboniferous) fishes and crustaceans found near Glasgow. Nature 297, 574577.Google Scholar
Woodward, A. S. 1891. Catalogue of fossil fishes in the British Museum (Natural History). Part II. Containing the Elasmobranchii (Acanthodii), Holocephali, Ichthyodorulites, Ostracodermi, Dipnoi, and Teleostomi (Crossopterygii and Chondrostean Actinopterygii). London: Trustees of the British Museum (Natural History).Google Scholar
Woodward, A. S. 1895. Catalogue of fossil fishes in the British Museum (Natural History). Part III. Containing the Actinopterygian Teleostomi of the Orders Chondrostei (Concluded), Protospondyli, Aethospondyli, and Isospondyli (in Part). London: Trustees of the British Museum (Natural History).Google Scholar
Young, J. 1866. On the affinities of Platysomus and allied genera. Quarterly Journal of the Geological Society of London 22, 301317+II pls.Google Scholar
Zidek, J. 1992. Late Pennsylvanian Chondrichthyes, Acanthodii, and deep-bodied Actinopterygii from the Kinney Quarry, Manzanita Mountains, New Mexico. In Zidek, J. (ed.) Geology and paleontology of the Kinney Brick Quarry, Late Pennsylvanian, Central New Mexico, 138, 145182. Socorro, NM: New Mexico Bureau of Mines & Mineral Resources Bulletin.Google Scholar