Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T07:41:06.216Z Has data issue: false hasContentIssue false

Environmental controls on the taphonomy and distribution of Carboniferous malacostracan crustaceans

Published online by Cambridge University Press:  03 November 2011

D. E. G. Briggs
Affiliation:
Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, England.
E. N. K. Clarkson
Affiliation:
Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland.

Abstract

Shrimp-like malacostracan crustaceans first appeared in the late Devonian and underwent a substantial adaptive radiation in the Carboniferous. They are rarely found in rocks of fully marine origin but are well represented in sediments laid down in brackish water and marginal marine conditions; such transitional environments provide the exceptional circumstances required for the preservation of unmineralised shrimps. The best examples are in the Dinantian of Scotland, the Namurian of Montana, and the Westphalian of Illinois. It is probable that shrimps were widespread in contemporaneous marine environments, but are not preserved.

Any approach to understanding the physiology of fossil organisms is necessarily indirect. The diversity of crustacean communities, and the nature of associated taxa and trace fossils, are the most useful biotic factors for interpreting the habitat and tolerance of fossil examples.

All known Carboniferous crustacean communities lived in brackish conditions; none is fully marine. Malacostracan assemblages in the Dinantian of Britain show a general trend of increasing diversity with salinity, from a single taxon at Gullane (stratified freshwater lake or brackish lagoon) to ten at Glencartholm (approaching normal marine). Tealliocaris is associated with low salinities. Crangopsis socialis is confined to the brackish water interdistributary bay environment, but Bairdops and Belotelson display a broader environmental tolerance. Crangopsis eskdalensis, Sairocaris, and Perimecturus occur only at Glencartholm, indicating a requirement for a strong marine influence. Those taxa confined to a limited environmental range all occur where a marine influence is pronounced; none occurs solely in areas of lower salinity. While salinity was apparently the dominant influence on distribution, a complex of independently varying environmental factors was involved. The range of habitats colonised early in the Carboniferous indicates that the preserved taxa had already developed advanced osmoregulatory mechanisms.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, L. G. 1974. Species diversity of decapod crustaceans in marine habitats. ECOLOGY 55, 156161.CrossRefGoogle Scholar
Allison, P. A. 1988a. The decay and mineralization of proteinaceous macrofossils. PALEOBIOLOGY 14, 139154.CrossRefGoogle Scholar
Allison, P. A. 1988b. Konservat-Lagerstätten: cause and classification. PALEOBIOLOGY 14, 331344.CrossRefGoogle Scholar
Baird, G. C., Shabica, C. W., Anderson, J. L. & Richardson, E. S. Jr. 1985. Biota of a Pennsylvanian muddy coast: habitats within the Mazonian Delta Complex, northeast Illinois, J PALEONTOL 59, 253281.Google Scholar
Barnes, R. S. K. 1989. What, if anything, is a brackish-water fauna? TRANS R SOC EDINBURGH EARTH SCI 80, 235240.Google Scholar
Beadle, L. C. 1972. Physiological problems for animal life in estuaries. In Barnes, R. S. K. & Green, J. (eds) The estuarine environment, 5160. London: Applied Science Publishers.Google Scholar
Berman, D. S. 1973. A trimerorhachid amphibian from the Upper Pennsylvanian of New Mexico. J PALEONTOL 47, 932945.Google Scholar
Bolton, H. 1905. Horizon and palaeontology of the soapstone bed, lower Coal-measures, near Colne, Lancashire. GEOL MAG (NEW SER) 5, 433444.CrossRefGoogle Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1983. The Lower Carboniferous Granton “shrimp-bed”, Edinburgh. In Briggs, D. E. G. & Lane, P. D. (eds) Trilobites and other arthropods: papers in honour of Professor H. B. Whittington, F.R.S. SPEC PAP PALAEONTOL 30, 161178.Google Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1985a. Malacostracan Crustacea from the Dinantian of Foulden, Berwickshire, Scotland. TRANS R SOC EDINBURGH EARTH SCI 76, 3540.CrossRefGoogle Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1985b. The Lower Carboniferous shrimp Tealliocaris from Gullane, East Lothian, Scotland. TRANS R SOC EDINBURGH EARTH SCI 76, 173201.Google Scholar
Cater, J. M. L. 1987. Sedimentology of part of the Lower Oil-Shale Group (Dinantian) sequence at Granton, including the Granton “shrimp-bed”. TRANS R SOC EDINBURGH EARTH SCI 78, 2940.CrossRefGoogle Scholar
Cater, J. M. L., Briggs, D. E. G. & Clarkson, E. N. K. 1989. Shrimp-bearing sedimentary successions in the Lower Carboniferous (Dinantian) Cementstone and Oil Shale Groups of northern Britain. TRANS R SOC EDINBURGH EARTH SCI 80, 515.CrossRefGoogle Scholar
Childress, J. J. 1971. Respiratory adaptations to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. BIOL BULL MAR BIOL LAB WOODS HOLE 141, 109121.CrossRefGoogle Scholar
Courel, L. 1983. Place du charbon dans le bassin d'effondrement Stephanien de Blanzy-Montceau (Massif Central Francais). MEM GEOL UNIV DIJON 8, 7182.Google Scholar
Courel, L., Valle, B. & Branchet, M. 1985. Le bassin houiller de Blanzy-Montceau. Cadre geologique et structural. Succession et dynamique des paleoenvironnements. BULL SOC HIST NAT AUTUN (FRANCE) 114, 726.Google Scholar
Dodd, J. R. & Stanton, R. J. Jr. 1981. Paleoecology, concepts and applications. New York: Wiley-Interscience.Google Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. BULL CARNEGIE MUS NAT HIST 13, 719.Google Scholar
Factor, D. F. & Feldmann, R. M. 1985. Systematics and paleoecology of malacostracan arthropods in the Bear Gulch Limestone (Namurian) of Central Montana. ANN CARNEGIE MUS 54, 319356.CrossRefGoogle Scholar
Fürsich, F. T. 1981. Salinity-controlled benthic associations from the Upper Jurassic of Portugal. Lethaia 14, 203223.CrossRefGoogle Scholar
Gilles, R. & Pequeux, A. 1983. Interactions of chemical and osmotic regulation with the environment. In Bliss, D. E. (ed.) The biology of Crustacea, Vol. 8, 109177. New York: Academic Press.Google Scholar
Hartnoll, R. G. 1982. Growth. In Bliss, D. E. (ed.) The biology of Crustacea, Vol. 2, 111196. New York: Academic Press.Google Scholar
Hesselbo, S. P. & Trewin, N. H. 1984. Deposition, diagenesis and structures of the Cheese Bay Shrimp Bed, Lower Carboniferous, East Lothian. SCOTT J GEOL 20, 281296.CrossRefGoogle Scholar
Kinne, O. 1970. Temperature: Animals—invertebrates. In Kinne, O. (ed.) Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters, Vol. 1, part 1, 407514. London: Wiley-Interscience.Google Scholar
Kinne, O. 1971. Salinity: Animals—invertebrates. In Kinne, O. (ed.) Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters, Vol. 1, part 2, 821995. London: Wiley-Interscience.Google Scholar
Lockwood, A. P. M. 1962. The osmoregulation of Crustacea. BIOL REV 37, 257305.CrossRefGoogle Scholar
Lockwood, A. P. M. & Bolt, S. R. L. 1989. Physiology of Crustacea from difficult environments. TRANS R SOC EDINBURGH EARTH SCI 80, 285292.Google Scholar
Mantel, L. H. & Farmer, L. L. 1983. Osmotic and ionic regulation. In Bliss, D. E. (ed.) The biology of Crustacea, Vol. 5, 53161. New York: Academic Press.Google Scholar
McMahon, B. R. & Wilkens, J. L. 1983. Ventilation, perfusion, and oxygen uptake. In Bliss, D. E. (ed.) The biology of Crustacea, Vol. 5, 289372. New York: Academic Press.Google Scholar
Peach, B. N. 1882. On some new Crustacea from the Lower Carboniferous rocks of Eskdale and Liddesdale. TRANS R SOC EDINBURGH 30, 7391.CrossRefGoogle Scholar
Peach, B. N. 1883. Further researches among the Crustacea and Arachnida of the Carboniferous rocks of the Scottish border. TRANS R SOC EDINBURGH 30, 511529.CrossRefGoogle Scholar
Peach, B. N. 1908. A monograph of the higher Crustacea of the Carboniferous rocks of Scotland. MEM GEOL SURV G B PALAEONTOL.CrossRefGoogle Scholar
Sastry, A. N. 1983. Ecological aspects of reproduction. In Bliss, D. E. (ed) The biology of Crustacea, Vol. 8, 179270. New York: Academic Press.Google Scholar
Savrda, C. E. & Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. GEOLOGY 14, 36.2.0.CO;2>CrossRefGoogle Scholar
Savrda, C. E. & Bottjer, D. J. 1987. The exaerobic zone, a new oxygen-deficient marine biofacies. NATURE 327, 5456.CrossRefGoogle Scholar
Schram, J. M. & Schram, F. R. 1974. Squillites spinosus Scott 1938 (Syncarida, Malacostraca) from the Mississippian Heath Shale of Central Montana. J PALEONTOL 48, 95104.Google Scholar
Schram, F. R. 1977. Paleozoogeography of late Paleozoic and Triassic Malacostraca. SYST ZOOL 26, 367379.CrossRefGoogle Scholar
Schram, F. R. 1979a. British Carboniferous Malacostraca. FIELDIANA GEOL 40, 1129.Google Scholar
Schram, F. R. 1979b. The genus Archaeocaris, and a general review of the Palaeostomatopoda (Hoplocarida: Malacostraca). TRANS SAN DIEGO SOC NAT HIST 19, 5766.Google Scholar
Schram, F. R. 1979c. The Mazon Creek biotas in the context of a Carboniferous continuum. In Nitecki, M. H. (ed.) Mazon Creek fossils, 159190. New York: Academic Press.CrossRefGoogle Scholar
Schram, F. R. 1981. Late Paleozoic crustacean communities. J PALEONTOL 55, 126137.Google Scholar
Schram, F. R. 1983. Lower Carboniferous biota of Glencartholm, Eskdale, Dumfriesshire. SCOTT J GEOL 19, 115.CrossRefGoogle Scholar
Schram, F. R. 1984. Fossil Syncarida. TRANS SAN DIEGO SOC NAT HIST 20, 189246.Google Scholar
Schram, F. R. 1986. Crustacea. New York: Oxford University Press.Google Scholar
Schram, F. R., Feldmann, R. M. & Copeland, M. J. 1978. The late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. J PALEONTOL 52, 13751387.Google Scholar
Schram, F. R. & Schram, J. M. 1979. Some shrimp of the Madera Formation (Pennsylvanian) Manzanita Mountains, New Mexico. J PALEONTOL 53, 169174.Google Scholar
Seilacher, A., Reif, W.-E. & Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. PHILOS TRANS R SOC LONDON B311, 523.Google Scholar
Staff, G. M. & Powell, E. N. 1988. The paleoecological significance of diversity: the effect of time averaging and differential preservation on macroinvertebrate species richness in death assemblages. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 63, 7389.CrossRefGoogle Scholar
Vernberg, F. J. 1985. Environmental physiology. In Laverack, M. S. Physiological adaptations of marine animals. Symposia of the Society for Experimental Biology 39, 131.Google ScholarPubMed
Williams, L. A. 1983. Deposition of the Bear Gulch Limestone: a Carboniferous Plattenkalk from central Montana. SEDIMENTOLOGY 30, 843860.CrossRefGoogle Scholar
Williamson, D. I. 1982. Larval morphology and diversity. In Bliss, D. E. (ed.) The biology of Crustacea, Vol. 2, 43110. New York: Academic Press.Google Scholar
Wood, S. P. 1982. New basal Namurian (Upper Carboniferous) fishes and crustaceans found near Glasgow. NATURE 297, 574577.CrossRefGoogle Scholar
de Zwaan, A. & Putzer, V. 1985. Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia). In Laverack, M. S. Physiological adaptations of marine animals. Symposia of the Society for Experimental Biology 39, 3362.Google ScholarPubMed